Zhang Lei, Michel Manon, Elçi Eren M, Deng Youjin
Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Phys Rev Lett. 2020 Nov 13;125(20):200603. doi: 10.1103/PhysRevLett.125.200603.
Potts spin systems play a fundamental role in statistical mechanics and quantum field theory and can be studied within the spin, the Fortuin-Kasteleyn (FK) bond or the q-flow (loop) representation. We introduce a Loop-Cluster (LC) joint model of bond-occupation variables interacting with q-flow variables and formulate an LC algorithm that is found to be in the same dynamical universality as the celebrated Swendsen-Wang algorithm. This leads to a theoretical unification for all the representations, and numerically, one can apply the most efficient algorithm in one representation and measure physical quantities in others. Moreover, by using the LC scheme, we construct a hierarchy of geometric objects that contain as special cases the q-flow clusters and the backbone of FK clusters, the exact values of whose fractal dimensions in two dimensions remain as an open question. Our work not only provides a unified framework and an efficient algorithm for the Potts model but also brings new insights into the rich geometric structures of the FK clusters.
Potts自旋系统在统计力学和量子场论中起着基础性作用,可以在自旋、Fortuin-Kasteleyn(FK)键或q流(回路)表示中进行研究。我们引入了一个键占据变量与q流变量相互作用的回路簇(LC)联合模型,并制定了一种LC算法,发现该算法与著名的Swendsen-Wang算法具有相同的动力学普适性。这导致了所有表示的理论统一,并且在数值上,人们可以在一种表示中应用最有效的算法,并在其他表示中测量物理量。此外,通过使用LC方案,我们构建了一个几何对象层次结构,其中作为特殊情况包含q流簇和FK簇的骨架,其在二维中的分形维数的确切值仍然是一个未解决的问题。我们的工作不仅为Potts模型提供了一个统一的框架和一种有效的算法,而且还为FK簇丰富的几何结构带来了新的见解。