Chen Hsin-Yu
Black Hole Initiative, Harvard University, Cambridge, Massachusetts 02138, USA; LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; and Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Phys Rev Lett. 2020 Nov 13;125(20):201301. doi: 10.1103/PhysRevLett.125.201301.
The independent measurement of the Hubble constant with gravitational-wave standard sirens will potentially shed light on the tension between the local distance ladders and Planck experiments. Therefore, thorough understanding of the sources of systematic uncertainty for the standard siren method is crucial. In this Letter, we focus on two scenarios that will potentially dominate the systematic uncertainty of standard sirens. First, simulations of electromagnetic counterparts of binary neutron star mergers suggest aspherical emissions, so the binaries available for the standard siren method can be selected by their viewing angles. This selection effect can lead to ≳2% bias in Hubble constant measurement even with mild selection. Second, if the binary viewing angles are constrained by the electromagnetic counterpart observations but the bias of the constraints is not controlled under ∼10°, the resulting systematic uncertainty in the Hubble constant will be >3%. In addition, we find that both of the systematics cannot be properly removed by the viewing angle measurement from gravitational-wave observations. Comparing to the known dominant systematic uncertainty for standard sirens, the ≤2% gravitational-wave calibration uncertainty, the effects from the viewing angle appear to be more significant. Therefore, the systematic uncertainty from the viewing angle might be a major challenge before the standard sirens can resolve the tension in the Hubble constant, which is currently ∼9%.
利用引力波标准警笛对哈勃常数进行独立测量,有可能揭示局部距离阶梯与普朗克实验之间的矛盾。因此,深入了解标准警笛方法系统不确定性的来源至关重要。在本信函中,我们聚焦于两种可能主导标准警笛系统不确定性的情形。其一,双中子星合并电磁对应体的模拟显示存在非球对称发射,故而可通过观测角度来选择用于标准警笛方法的双星。即便选择条件较为宽松,这种选择效应也可能导致哈勃常数测量出现≳2%的偏差。其二,如果双星的观测角度受电磁对应体观测的限制,但其限制偏差未控制在约10°以内,那么哈勃常数由此产生的系统不确定性将大于3%。此外,我们发现,通过引力波观测进行观测角度测量无法妥善消除这两种系统误差。与标准警笛已知的主要系统不确定性(≤2%的引力波校准不确定性)相比,观测角度的影响似乎更为显著。因此,在标准警笛能够解决目前约为9%的哈勃常数矛盾之前,观测角度带来的系统不确定性可能是一个主要挑战。