LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal.
Database (Oxford). 2020 Dec 1;2020. doi: 10.1093/database/baaa104.
Biomedical relation extraction (RE) datasets are vital in the construction of knowledge bases and to potentiate the discovery of new interactions. There are several ways to create biomedical RE datasets, some more reliable than others, such as resorting to domain expert annotations. However, the emerging use of crowdsourcing platforms, such as Amazon Mechanical Turk (MTurk), can potentially reduce the cost of RE dataset construction, even if the same level of quality cannot be guaranteed. There is a lack of power of the researcher to control who, how and in what context workers engage in crowdsourcing platforms. Hence, allying distant supervision with crowdsourcing can be a more reliable alternative. The crowdsourcing workers would be asked only to rectify or discard already existing annotations, which would make the process less dependent on their ability to interpret complex biomedical sentences. In this work, we use a previously created distantly supervised human phenotype-gene relations (PGR) dataset to perform crowdsourcing validation. We divided the original dataset into two annotation tasks: Task 1, 70% of the dataset annotated by one worker, and Task 2, 30% of the dataset annotated by seven workers. Also, for Task 2, we added an extra rater on-site and a domain expert to further assess the crowdsourcing validation quality. Here, we describe a detailed pipeline for RE crowdsourcing validation, creating a new release of the PGR dataset with partial domain expert revision, and assess the quality of the MTurk platform. We applied the new dataset to two state-of-the-art deep learning systems (BiOnt and BioBERT) and compared its performance with the original PGR dataset, as well as combinations between the two, achieving a 0.3494 increase in average F-measure. The code supporting our work and the new release of the PGR dataset is available at https://github.com/lasigeBioTM/PGR-crowd.
生物医学关系抽取 (RE) 数据集对于知识库的构建和新交互发现至关重要。有几种方法可以创建生物医学 RE 数据集,有些比其他方法更可靠,例如依赖于领域专家的注释。然而,新兴的众包平台(如亚马逊 Mechanical Turk (MTurk))的使用,虽然不能保证相同的质量水平,但可以降低 RE 数据集构建的成本。研究人员缺乏控制谁、如何以及在什么情境下工人在众包平台上参与的能力。因此,将远程监督与众包结合使用可能是一种更可靠的替代方法。众包工人只需被要求纠正或丢弃已有的注释,这将使该过程较少依赖于他们理解复杂生物医学句子的能力。在这项工作中,我们使用先前创建的远程监督人类表型-基因关系 (PGR) 数据集来进行众包验证。我们将原始数据集分为两个注释任务:任务 1,由一名工人注释 70%的数据集;任务 2,由七名工人注释 30%的数据集。此外,对于任务 2,我们增加了一名现场额外评估者和一名领域专家,以进一步评估众包验证的质量。在这里,我们描述了一个详细的 RE 众包验证流程,创建了一个带有部分领域专家修订的新 PGR 数据集版本,并评估了 MTurk 平台的质量。我们将新数据集应用于两个最先进的深度学习系统 (BiOnt 和 BioBERT),并将其性能与原始 PGR 数据集以及两者的组合进行了比较,平均 F1 分数提高了 0.3494。支持我们工作的代码和新的 PGR 数据集版本可在 https://github.com/lasigeBioTM/PGR-crowd 上获得。
J Med Internet Res. 2013-4-2
Pac Symp Biocomput. 2015
BMC Med Inform Decis Mak. 2018-7-23
J Am Med Inform Assoc. 2013-5-5
Database (Oxford). 2016-4-17
J Biomed Inform. 2023-10
Bioinformatics. 2023-4-3
Genomics Inform. 2021-9
Bioinformatics. 2020-2-15
BMC Bioinformatics. 2019-1-7
AMIA Jt Summits Transl Sci Proc. 2018-5-18
Bioinformatics. 2017-9-1