Dormidontov Andrey G, Kolchugina Natalia B, Dormidontov Nikolay A, Milov Yury V, Andreenko Alexander S
LLC "MEM", 123458 Moscow, Russia.
Materials (Basel). 2020 Nov 28;13(23):5426. doi: 10.3390/ma13235426.
Experimental series of alloys for (Sm,Zr)(Co,Cu,Fe) permanent magnets are presented in the concentration ranges that provide wide variations of (4)/(4)/(3) ratios of comprising elements. Optical metallographic analysis, observation of the surface domain structure upon magnetization reversal (Kerr effect), electron microprobe analysis, and measuring the major hysteresis loops of samples at different stages of heat treatment are used to study processes related to the development of the highly coercive state of these samples. It was found that the volume fractions of two main structural components A and B, which comprise 90% of the total sample volume, rigorously control the coercivity at all stages of thermal aging. At the same time, structural components A and B themselves in samples being in the high-coercivity state differ qualitatively and quantitatively in the chemical composition, domain structure and its development in external magnetic fields and, therefore, are characterized by different morphologies of the phases comprising the structural components. Two stages of phase transformations in the sample structure are observed. During isothermal annealing, the cellular structure develops within the B component, whereas, during stepwise (slow) cooling or quenching from the isothermal aging temperature to 400 °C, a phase structure evolves within both the cell boundaries in B and the structural component A. The degree of completion of the phase transformations within micro- and nano-volumes of the components determines the ultimate hysteretic characteristics of the material.
本文给出了用于(Sm,Zr)(Co,Cu,Fe)永磁体的合金实验系列,其浓度范围能使组成元素的(4)/(4)/(3)比例有很大变化。利用光学金相分析、磁化反转时表面磁畴结构的观察(克尔效应)、电子微探针分析以及测量样品在不同热处理阶段的主要磁滞回线,来研究与这些样品高矫顽力状态发展相关的过程。结果发现,占样品总体积90%的两种主要结构组分A和B的体积分数,在热时效的所有阶段都严格控制着矫顽力。同时,处于高矫顽力状态的样品中的结构组分A和B本身,在化学成分、磁畴结构及其在外部磁场中的发展方面,在质和量上都有所不同,因此,其特征在于构成结构组分的相具有不同的形态。观察到样品结构中的两个相变阶段。在等温退火过程中,B组分内部会形成胞状结构,而在从等温时效温度逐步(缓慢)冷却或淬火至400℃的过程中,B中的胞界和结构组分A内部都会形成相结构。组分微体积和纳体积内相变的完成程度决定了材料最终的磁滞特性。