Suppr超能文献

基于二维分数布朗运动构建的递归网络的分形分析。

Fractal analysis of recurrence networks constructed from the two-dimensional fractional Brownian motions.

作者信息

Liu Jin-Long, Yu Zu-Guo, Leung Yee, Fung Tung, Zhou Yu

机构信息

Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China.

Institute of Future Cities, The Chinese University of Hong Kong, Shatin, Hong Kong, China.

出版信息

Chaos. 2020 Nov;30(11):113123. doi: 10.1063/5.0003884.

Abstract

In this study, we focus on the fractal property of recurrence networks constructed from the two-dimensional fractional Brownian motion (2D fBm), i.e., the inter-system recurrence network, the joint recurrence network, the cross-joint recurrence network, and the multidimensional recurrence network, which are the variants of classic recurrence networks extended for multiple time series. Generally, the fractal dimension of these recurrence networks can only be estimated numerically. The numerical analysis identifies the existence of fractality in these constructed recurrence networks. Furthermore, it is found that the numerically estimated fractal dimension of these networks can be connected to the theoretical fractal dimension of the 2D fBm graphs, because both fractal dimensions are piecewisely associated with the Hurst exponent H in a highly similar pattern, i.e., a linear decrease (if H varies from 0 to 0.5) followed by an inversely proportional-like decay (if H changes from 0.5 to 1). Although their fractal dimensions are not exactly identical, their difference can actually be deciphered by one single parameter with the value around 1. Therefore, it can be concluded that these recurrence networks constructed from the 2D fBms must inherit some fractal properties of its associated 2D fBms with respect to the fBm graphs.

摘要

在本研究中,我们关注由二维分数布朗运动(2D fBm)构建的递归网络的分形特性,即系统间递归网络、联合递归网络、交叉联合递归网络和多维递归网络,它们是为多个时间序列扩展的经典递归网络的变体。一般来说,这些递归网络的分形维数只能通过数值估计。数值分析确定了这些构建的递归网络中存在分形性。此外,发现这些网络的数值估计分形维数可以与2D fBm图的理论分形维数相关联,因为这两个分形维数都以高度相似的模式与赫斯特指数H分段相关,即线性下降(如果H从0变化到0.5),随后是类似反比例的衰减(如果H从0.5变化到1)。虽然它们的分形维数不完全相同,但它们的差异实际上可以由一个值约为1的单一参数来解释。因此,可以得出结论,由2D fBm构建的这些递归网络在fBm图方面必定继承了其相关2D fBm的一些分形特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验