Department of Biosciences, Durham University, Durham, United Kingdom.
School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia.
mBio. 2020 Dec 1;11(6):e02804-20. doi: 10.1128/mBio.02804-20.
Copper (Cu) is an essential metal for bacterial physiology but in excess it is bacteriotoxic. To limit Cu levels in the cytoplasm, most bacteria possess a transcriptionally responsive system for Cu export. In the Gram-positive human pathogen (group A [GAS]), this system is encoded by the operon. This study demonstrates that although the site of GAS infection represents a Cu-rich environment, inactivation of the Cu efflux gene does not reduce virulence in a mouse model of invasive disease. , Cu treatment leads to multiple observable phenotypes, including defects in growth and viability, decreased fermentation, inhibition of glyceraldehyde-3-phosphate dehydrogenase (GapA) activity, and misregulation of metal homeostasis, likely as a consequence of mismetalation of noncognate metal-binding sites by Cu. Surprisingly, the onset of these effects is delayed by ∼4 h even though expression of is upregulated immediately upon exposure to Cu. Further biochemical investigations show that the onset of all phenotypes coincides with depletion of intracellular glutathione (GSH). Supplementation with extracellular GSH replenishes the intracellular pool of this thiol and suppresses all the observable effects of Cu treatment. These results indicate that GSH buffers excess intracellular Cu when the transcriptionally responsive Cu export system is overwhelmed. Thus, while the operon is responsible for Cu , GSH has a role in Cu and allows bacteria to maintain metabolism even in the presence of an excess of this metal ion. The control of intracellular metal availability is fundamental to bacterial physiology. In the case of copper (Cu), it has been established that rising intracellular Cu levels eventually fill the metal-sensing site of the endogenous Cu-sensing transcriptional regulator, which in turn induces transcription of a copper export pump. This response caps intracellular Cu availability below a well-defined threshold and prevents Cu toxicity. Glutathione, abundant in many bacteria, is known to bind Cu and has long been assumed to contribute to bacterial Cu handling. However, there is some ambiguity since neither its biosynthesis nor uptake is Cu-regulated. Furthermore, there is little experimental support for this physiological role of glutathione beyond measuring growth of glutathione-deficient mutants in the presence of Cu. Our work with group A provides new evidence that glutathione increases the threshold of intracellular Cu availability that can be tolerated by bacteria and thus advances fundamental understanding of bacterial Cu handling.
铜(Cu)是细菌生理学所必需的金属,但过量时对细菌有毒。为了将细胞质中的铜水平限制在最低,大多数细菌都拥有一个对铜输出具有转录响应性的系统。在革兰氏阳性的人类病原体 (A 组链球菌[GAS])中,该系统由 操纵子编码。本研究表明,尽管 GAS 感染部位代表了一个富含铜的环境,但在一种侵袭性疾病的小鼠模型中, 铜外排基因的失活并不会降低其毒力。尽管如此,Cu 处理会导致多种可观察到的表型,包括生长和活力缺陷、发酵减少、甘油醛-3-磷酸脱氢酶(GapA)活性抑制以及金属稳态失调,这可能是由于 Cu 错配非同源金属结合位点所致。令人惊讶的是,即使在暴露于 Cu 后立即上调 的表达,这些效应的开始仍延迟了约 4 小时。进一步的生化研究表明,所有表型的开始都与细胞内谷胱甘肽(GSH)的耗尽同时发生。细胞外 GSH 的补充可补充该巯基的细胞内池,并抑制 Cu 处理的所有可观察到的影响。这些结果表明,当转录响应性铜外排系统不堪重负时,GSH 缓冲细胞内过量的铜。因此,尽管 操纵子负责 Cu ,但 GSH 在 Cu 中起作用,并允许细菌即使在存在过量金属离子的情况下也能维持新陈代谢。细胞内金属可用性的控制对细菌生理学至关重要。在铜(Cu)的情况下,已经确定细胞内 Cu 水平的升高最终会填满内源性铜感应转录调节剂的金属感应位点,从而诱导铜输出泵的转录。这种反应将细胞内 Cu 的可用性限制在一个明确的阈值以下,防止 Cu 毒性。谷胱甘肽在许多细菌中含量丰富,已知其与 Cu 结合,并长期以来被认为有助于细菌 Cu 处理。然而,由于其生物合成和摄取都不受 Cu 调节,因此存在一些模糊性。此外,除了在存在 Cu 的情况下测量谷胱甘肽缺陷突变体的生长外,几乎没有实验证据支持谷胱甘肽的这种生理作用。我们对 A 组链球菌的研究提供了新的证据,表明谷胱甘肽增加了细菌可以耐受的细胞内 Cu 可用性的阈值,从而推进了对细菌 Cu 处理的基本理解。