文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

小肠牛磺胆酸-FXR 轴改变大鼠局部营养感应糖调节途径。

Small intestinal taurochenodeoxycholic acid-FXR axis alters local nutrient-sensing glucoregulatory pathways in rats.

机构信息

Toronto General Hospital Research Institute, UHN, Toronto, Canada.

Toronto General Hospital Research Institute, UHN, Toronto, Canada; Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.

出版信息

Mol Metab. 2021 Feb;44:101132. doi: 10.1016/j.molmet.2020.101132. Epub 2020 Nov 29.


DOI:10.1016/j.molmet.2020.101132
PMID:33264656
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7753965/
Abstract

OBJECTIVE: The mechanism of nutrient sensing in the upper small intestine (USI) and ileum that regulates glucose homeostasis remains elusive. Short-term high-fat (HF) feeding increases taurochenodeoxycholic acid (TCDCA; an agonist of farnesoid X receptor (FXR)) in the USI and ileum of rats, and the increase of TCDCA is prevented by transplantation of microbiota obtained from the USI of healthy donors into the USI of HF rats. However, whether changes of TCDCA-FXR axis in the USI and ileum alter nutrient sensing remains unknown. METHODS: Intravenous glucose tolerance test was performed in rats that received USI or ileal infusion of nutrients (i.e., oleic acids or glucose) via catheters placed toward the lumen of USI and/or ileum, while mechanistic gain- and loss-of-function studies targeting the TCDCA-FXR axis or bile salt hydrolase activity in USI and ileum were performed. RESULTS: USI or ileum infusion of nutrients increased glucose tolerance in healthy but not HF rats. Transplantation of healthy microbiome obtained from USI into the USI of HF rats restored nutrient sensing and inhibited FXR via a reduction of TCDCA in the USI and ileum. Further, inhibition of USI and ileal FXR enhanced nutrient sensing in HF rats, while inhibiting USI (but not ileal) bile salt hydrolase of HF rats transplanted with healthy microbiome activated FXR and disrupted nutrient sensing in the USI and ileum. CONCLUSIONS: We reveal a TCDCA-FXR axis in both the USI and ileum that is necessary for the upper small intestinal microbiome to govern local nutrient-sensing glucoregulatory pathways in rats.

摘要

目的:调节血糖稳态的上小肠(USI)和回肠中营养感应的机制仍不清楚。短期高脂肪(HF)喂养会增加大鼠 USI 和回肠中的牛磺胆酸(TCDCA;法尼醇 X 受体(FXR)的激动剂),而来自健康供体 USI 的微生物群移植到 HF 大鼠的 USI 中可防止 TCDCA 的增加。然而,USI 和回肠中 TCDCA-FXR 轴的变化是否改变营养感应仍不清楚。

方法:通过向 USI 和/或回肠的管腔中放置导管,对接受 USI 或回肠营养(即油酸或葡萄糖)输注的大鼠进行静脉葡萄糖耐量试验,同时针对 TCDCA-FXR 轴或 USI 和回肠中的胆汁盐水解酶活性进行功能获得和功能丧失的机制研究。

结果:USI 或回肠输注营养物质可增加健康大鼠而非 HF 大鼠的葡萄糖耐量。将来自 USI 的健康微生物组移植到 HF 大鼠的 USI 中可恢复营养感应,并通过减少 USI 和回肠中的 TCDCA 来抑制 FXR。此外,HF 大鼠 USI 和回肠 FXR 的抑制增强了营养感应,而 HF 大鼠 USI(而非回肠)胆汁盐水解酶的抑制激活了 FXR 并破坏了 USI 和回肠中的营养感应。

结论:我们揭示了 USI 和回肠中 TCDCA-FXR 轴是上小肠微生物群调节大鼠局部营养感应葡萄糖调节途径所必需的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25a4/7753965/9ab07d0de24c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25a4/7753965/13a91cc656b3/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25a4/7753965/704825065fae/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25a4/7753965/6c4b5164e0ae/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25a4/7753965/9ab07d0de24c/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25a4/7753965/13a91cc656b3/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25a4/7753965/704825065fae/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25a4/7753965/6c4b5164e0ae/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25a4/7753965/9ab07d0de24c/gr4.jpg

相似文献

[1]
Small intestinal taurochenodeoxycholic acid-FXR axis alters local nutrient-sensing glucoregulatory pathways in rats.

Mol Metab. 2021-2

[2]
FXR in the dorsal vagal complex is sufficient and necessary for upper small intestinal microbiome-mediated changes of TCDCA to alter insulin action in rats.

Gut. 2021-9

[3]
Taurochenodeoxycholic acid inhibits intestinal epithelial cell proliferation and induces apoptosis independent of the farnesoid X receptor.

Food Funct. 2023-6-6

[4]
Lactobacillus gasseri in the Upper Small Intestine Impacts an ACSL3-Dependent Fatty Acid-Sensing Pathway Regulating Whole-Body Glucose Homeostasis.

Cell Metab. 2018-3-6

[5]
Metformin Alters Upper Small Intestinal Microbiota that Impact a Glucose-SGLT1-Sensing Glucoregulatory Pathway.

Cell Metab. 2017-10-19

[6]
Differential activation of the human farnesoid X receptor depends on the pattern of expressed isoforms and the bile acid pool composition.

Biochem Pharmacol. 2013-8-6

[7]
An Intestinal Farnesoid X Receptor-Ceramide Signaling Axis Modulates Hepatic Gluconeogenesis in Mice.

Diabetes. 2017-3

[8]
Role of Bile Acids and GLP-1 in Mediating the Metabolic Improvements of Bariatric Surgery.

Gastroenterology. 2018-11-13

[9]
Ileal bile acid-binding protein, functionally associated with the farnesoid X receptor or the ileal bile acid transporter, regulates bile acid activity in the small intestine.

J Biol Chem. 2005-12-23

[10]
Bile acids regulate the ontogenic expression of ileal bile acid binding protein in the rat via the farnesoid X receptor.

Gastroenterology. 2002-5

引用本文的文献

[1]
Matcha alleviates obesity by modulating gut microbiota and its metabolites.

Curr Res Food Sci. 2024-8-17

[2]
The Gut Microbiota and Diabetes: Research, Translation, and Clinical Applications-2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum.

Diabetes Care. 2024-9-1

[3]
The Gut Microbiota and Diabetes: Research, Translation, and Clinical Applications-2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum.

Diabetes. 2024-9-1

[4]
The gut microbiota and diabetes: research, translation, and clinical applications - 2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum.

Diabetologia. 2024-9

[5]
Impact of Plant-Based Dietary Fibers on Metabolic Homeostasis in High-Fat Diet Mice via Alterations in the Gut Microbiota and Metabolites.

J Nutr. 2024-7

[6]
Gut Microbiota and Insulin Resistance: Understanding the Mechanism of Better Treatment of Type 2 Diabetes Mellitus.

Curr Diabetes Rev. 2024

[7]
Small intestinal CaSR-dependent and CaSR-independent protein sensing regulates feeding and glucose tolerance in rats.

Nat Metab. 2024-1

[8]
Screening and verification of antiviral compounds against HSV-1 using a method based on a plaque inhibition assay.

BMC Infect Dis. 2023-12-19

[9]
Metformin triggers a kidney GDF15-dependent area postrema axis to regulate food intake and body weight.

Cell Metab. 2023-5-2

[10]
Small intestinal metabolomics analysis reveals differentially regulated metabolite profiles in obese rats and with prebiotic supplementation.

Metabolomics. 2022-7-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索