Xu Wenjian, Chen Xi, Chen Jing, Jia Hongpeng
CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, 361021, China.
CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
J Hazard Mater. 2021 Feb 5;403:123869. doi: 10.1016/j.jhazmat.2020.123869. Epub 2020 Sep 2.
A MOF-templated method is developed to prepare bimetal oxide CuO/CoO by in situ pyrolysis of Cu partly-substituted ZIF-67 precursor. The physicochemical properties of CuO/CoO are studied by various characterizations such as X-ray diffraction, Raman analysis, transmission electron microscope, scanning electron microscope, N adsorption-desorption measurement, X-ray photoelectron spectroscope, O temperature-programmed desorption, H temperature-programmed reduction, etc. Comparison with CuO, CoO and Mix-CuO/CoO, 90 % of both toluene conversion and mineralization over CuO/CoO are fulfilled at around 229 °C under the condition of 1000 ppm toluene and weight hour space velocity =20,000 mL/(g h), which is promoted more than 40 °C. The better catalytic performance of CuO/CoO attributes to high mutual dispersion of two oxides, porous structure, lower temperature reducibility, abundant lattice defects, more active oxygen species, higher Co/Co and O/O molar ratios. Meanwhile, CuO/CoO exhibits a better catalytic stability at different conversions and a good tolerance to 10 vol.% of water vapour. The investigation of temperature-dependent active oxygen species and in-situ DRIFTS results reveal that toluene oxidation on CuO/CoO obeys Mars van Krevelen mechanism.
开发了一种以金属有机框架(MOF)为模板的方法,通过对部分取代的ZIF-67前驱体进行原位热解来制备双金属氧化物CuO/CoO。通过各种表征手段,如X射线衍射、拉曼分析、透射电子显微镜、扫描电子显微镜、N吸附-脱附测量、X射线光电子能谱、O程序升温脱附、H程序升温还原等,对CuO/CoO的物理化学性质进行了研究。与CuO、CoO和混合CuO/CoO相比,在1000 ppm甲苯和重量时空速=20,000 mL/(g h)的条件下,CuO/CoO在约229 °C时实现了90%的甲苯转化率和矿化率,温度提高了40 °C以上。CuO/CoO较好的催化性能归因于两种氧化物的高度相互分散、多孔结构、较低的温度还原度、丰富的晶格缺陷、更多的活性氧物种、更高的Co/Co和O/O摩尔比。同时,CuO/CoO在不同转化率下表现出较好的催化稳定性,并且对10 vol.%的水蒸气具有良好的耐受性。对温度依赖性活性氧物种的研究和原位漫反射红外傅里叶变换光谱(DRIFTS)结果表明,CuO/CoO上的甲苯氧化遵循Mars van Krevelen机理。