Suppr超能文献

现场鉴定六种类型石棉。

In situ spectroscopic identification of the six types of asbestos.

机构信息

School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, United Kingdom.

School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, United Kingdom; ATBC, HAN University of Applied Sciences, 6525 EM Nijmegen, The Netherlands.

出版信息

J Hazard Mater. 2021 Feb 5;403:123951. doi: 10.1016/j.jhazmat.2020.123951. Epub 2020 Sep 12.

Abstract

Exposure to asbestos fibres is related to a number of severe lung diseases, and therefore, rapid, accurate and reliable in situ or on-site asbestos detection in real-life samples is of considerable importance. This work presents a comprehensive investigation of all six types of asbestos by mid-infrared ATR-FTIR, NIR spectroscopy and Raman microspectroscopy. Our studies demonstrate that for practical applications, NIR spectroscopy is potentially the most powerful method for asbestos identification in materials utilised by the construction industry. By focusing on the narrow spectral region, 7300-7000 cm (~1370-1430 nm, overtones of O‒H vibrations), which is highly specific to these materials, and optimising the sensitivity and resolution of the instrumentation, we have been able to discriminate and identify each of the six types of asbestos with the level of detection significantly better than 1 wt%. Furthermore, straightforward computational analysis has allowed for automated objective evaluation of the spectroscopic data.

摘要

石棉纤维的暴露与许多严重的肺部疾病有关,因此,在实际样品中快速、准确、可靠的原位或现场石棉检测具有相当重要的意义。本工作全面研究了中红外 ATR-FTIR、近红外光谱和拉曼微光谱法对所有六种类型石棉的检测。我们的研究表明,对于实际应用,近红外光谱法在建筑行业中使用的材料的石棉识别方面具有潜在的最强有力的方法。通过关注高度特定于这些材料的狭窄光谱区域(7300-7000 cm(~1370-1430nm,O-H 振动的倍频)),并优化仪器的灵敏度和分辨率,我们已经能够以显著优于 1wt%的检测水平来区分和识别六种类型的石棉。此外,简单的计算分析允许对光谱数据进行自动化的客观评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验