Wu Jieting, Zhu Feiyu, Liu Xin, Yu Hongfeng
Department of Computer Science & Engineering, University of Nebraska-Lincoln, 1400 R St, Lincoln, NE 68588, USA.
Entropy (Basel). 2018 Aug 21;20(9):625. doi: 10.3390/e20090625.
Edge bundling is a promising graph visualization approach to simplifying the visual result of a graph drawing. Plenty of edge bundling methods have been developed to generate diverse graph layouts. However, it is difficult to defend an edge bundling method with its resulting layout against other edge bundling methods as a clear theoretic evaluation framework is absent in the literature. In this paper, we propose an information-theoretic framework to evaluate the visual results of edge bundling techniques. We first illustrate the advantage of edge bundling visualizations for large graphs, and pinpoint the ambiguity resulting from drawing results. Second, we define and quantify the amount of information delivered by edge bundling visualization from the underlying network using information theory. Third, we propose a new algorithm to evaluate the resulting layouts of edge bundling using the amount of the mutual information between a raw network dataset and its edge bundling visualization. Comparison examples based on the proposed framework between different edge bundling techniques are presented.
边捆绑是一种很有前景的图形可视化方法,用于简化图形绘制的视觉结果。已经开发了大量的边捆绑方法来生成多样化的图形布局。然而,由于文献中缺乏明确的理论评估框架,很难用其生成的布局来捍卫一种边捆绑方法优于其他边捆绑方法。在本文中,我们提出了一个信息论框架来评估边捆绑技术的视觉结果。我们首先阐述了边捆绑可视化对于大型图形的优势,并指出绘制结果所产生的模糊性。其次,我们使用信息论定义并量化了边捆绑可视化从基础网络传递的信息量。第三,我们提出了一种新算法,使用原始网络数据集与其边捆绑可视化之间的互信息量来评估边捆绑的生成布局。给出了基于所提出框架的不同边捆绑技术之间的比较示例。