Suppr超能文献

利用香农熵来验证ICD - 10与ICD - 11之间的转变。

Leveraging Shannon Entropy to Validate the Transition between ICD-10 and ICD-11.

作者信息

Chen Donghua, Zhang Runtong, Zhu Xiaomin

机构信息

School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China.

School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China.

出版信息

Entropy (Basel). 2018 Oct 8;20(10):769. doi: 10.3390/e20100769.

Abstract

This study aimed to propose a mapping framework with entropy-based metrics for validating the effectiveness of the transition between International Classification of Diseases 10th revision (ICD-10)-coded datasets and a new context of ICD-11. Firstly, we used tabular lists and mapping tables of ICD-11 to establish the framework. Then, we leveraged Shannon entropy to propose validation methods to evaluate information changes during the transition from the perspectives of single-code, single-disease, and multiple-disease datasets. Novel metrics, namely, standardizing rate (SR), uncertainty rate (UR), and information gain (IG), were proposed for the validation. Finally, validation results from an ICD-10-coded dataset with 377,589 records indicated that the proposed metrics reduced the complexity of transition evaluation. The results with the SR in the transition indicated that approximately 60% of the ICD-10 codes in the dataset were unable to map the codes to standard ICD-10 codes released by WHO. The validation results with the UR provided 86.21% of the precise mapping. Validation results of the IG in the dataset, before and after the transition, indicated that approximately 57% of the records tended to increase uncertainty when mapped from ICD-10 to ICD-11. The new features of ICD-11 involved in the transition can promote a reliable and effective mapping between two coding systems.

摘要

本研究旨在提出一个带有基于熵的指标的映射框架,以验证国际疾病分类第十次修订版(ICD - 10)编码数据集与ICD - 11新环境之间转换的有效性。首先,我们使用ICD - 11的表格列表和映射表来建立该框架。然后,我们利用香农熵提出验证方法,从单代码、单疾病和多疾病数据集的角度评估转换过程中的信息变化。为验证提出了新的指标,即标准化率(SR)、不确定率(UR)和信息增益(IG)。最后,来自一个有377,589条记录的ICD - 10编码数据集的验证结果表明,所提出的指标降低了转换评估的复杂性。转换中SR的结果表明,数据集中约60%的ICD - 10代码无法映射到世界卫生组织发布的标准ICD - 10代码。UR的验证结果提供了86.21%的精确映射。转换前后数据集中IG的验证结果表明,从ICD - 10映射到ICD - 11时,约57%的记录往往会增加不确定性。转换中涉及的ICD - 11的新特征可以促进两个编码系统之间可靠且有效的映射。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd0b/7512330/8eef8ad72af3/entropy-20-00769-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验