Abdollahzadeh Jamalabadi Mohammad Yaghoub
Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
Entropy (Basel). 2018 Nov 22;20(12):895. doi: 10.3390/e20120895.
The excellent thermal characteristics of nanoparticles have increased their application in the field of heat transfer. In this paper, a thermophysical and geometrical parameter study is performed to minimize the total entropy generation of the viscoelastic flow of nanofluid. Entropy generation with respect to volume fraction (<0.04), the Reynolds number (20,000-100,000), and the diameter of the microchannel (20-20,000 μm) with the circular cross-section under constant flux are calculated. As is shown, most of the entropy generation owes to heat transfer and by increasing the diameter of the channel, the Bejan number increases. The contribution of heat entropy generation in the microchannel is very poor and the major influence of entropy generation is attributable to friction. The maximum quantity of in-channel entropy generation happens in nanofluids with TiO, CuO, Cu, and Ag nanoparticles, in turn, despite the fact in the microchannel this behavior is inverted, the minimum entropy generation occurs in nanofluids with CuO, Cu, Ag, and TiO nanoparticles, in turn. In the channel and microchannel for all nanofluids except water-TiO, increasing the volume fraction of nanoparticles decreases entropy generation. In the channel and microchannel the total entropy generation increases by augmentation the Reynolds number.
纳米颗粒优异的热特性使其在传热领域的应用不断增加。本文进行了热物理和几何参数研究,以最小化纳米流体粘弹性流动的总熵产。计算了在恒定热流密度下,体积分数(<0.04)、雷诺数(20000 - 100000)以及具有圆形横截面的微通道直径(20 - 20000μm)对熵产的影响。结果表明,大部分熵产归因于热传递,并且随着通道直径的增加,贝扬数增大。微通道中热熵产的贡献非常小,熵产的主要影响归因于摩擦。尽管在微通道中情况相反,但通道内熵产的最大值依次出现在含有TiO、CuO、Cu和Ag纳米颗粒的纳米流体中,而最小值依次出现在含有CuO、Cu、Ag和TiO纳米颗粒的纳米流体中。在通道和微通道中,除了水 - TiO纳米流体外,对于所有纳米流体,增加纳米颗粒的体积分数都会降低熵产。在通道和微通道中,总熵产随着雷诺数的增大而增加。