Barragán V María, Kristiansen Kim R, Kjelstrup Signe
Department of Structure of Matter, Thermal Physics and Electronics; Complutense University of Madrid, 28040 Madrid, Spain.
PoreLab, Department of Chemistry, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
Entropy (Basel). 2018 Nov 26;20(12):905. doi: 10.3390/e20120905.
By thermoelectric power generation we mean the creation of electrical power directly from a temperature gradient. Semiconductors have been mainly used for this purpose, but these imply the use of rare and expensive materials. We show in this review that ion-exchange membranes may be interesting alternatives for thermoelectric energy conversion, giving Seebeck coefficients around 1 mV/K. Laboratory cells with Ag|AgCl electrodes can be used to find the transported entropies of the ions in the membrane without making assumptions. Non-equilibrium thermodynamics can be used to compute the Seebeck coefficient of this and other cells, in particular the popular cell with calomel electrodes. We review experimental results in the literature on cells with ion-exchange membranes, document the relatively large Seebeck coefficient, and explain with the help of theory its variation with electrode materials and electrolyte concentration and composition. The impact of the membrane heterogeneity and water content on the transported entropies is documented, and it is concluded that this and other properties should be further investigated, to better understand how all transport properties can serve the purpose of thermoelectric energy conversion.
我们所说的热电发电是指直接利用温度梯度来产生电能。半导体一直主要用于此目的,但这意味着要使用稀有且昂贵的材料。在本综述中,我们表明离子交换膜可能是热电能量转换的有趣替代方案,其塞贝克系数约为1 mV/K。带有Ag|AgCl电极的实验室电池可用于确定膜中离子的传输熵,而无需进行假设。非平衡热力学可用于计算这种电池和其他电池的塞贝克系数,特别是带有甘汞电极的常见电池。我们回顾了文献中关于带有离子交换膜的电池的实验结果,记录了相对较大的塞贝克系数,并借助理论解释了其随电极材料、电解质浓度和组成的变化。记录了膜的不均匀性和含水量对传输熵的影响,并得出结论,应进一步研究此特性和其他特性,以更好地理解所有传输特性如何服务于热电能量转换的目的。