Suppr超能文献

基于法拉第旋转反演法的InSAR测量电离层相位补偿

Ionospheric Phase Compensation for InSAR Measurements Based on the Faraday Rotation Inversion Method.

作者信息

Li Bing, Wang Zemin, An Jiachun, Zhang Baojun, Geng Hong, Ma Yuanyuan, Li Mingci, Qian Yide

机构信息

Chinese Antarctic Center of Surveying and Mapping, Wuhan University, 129 Luoyu Road, Wuhan 430079, China.

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China.

出版信息

Sensors (Basel). 2020 Dec 1;20(23):6877. doi: 10.3390/s20236877.

Abstract

The ionospheric error can significantly affect the synthetic aperture radar (SAR) signals, particularly in the case of L band and lower frequency SAR systems. The ionospheric distortions are mixed with terrain and ground deformation signals, lowering the precision of the interferometric measurements. Moreover, it is often difficult to detect the small-scale ionospheric structure due to its rapid changes and may have more influence on ionospheric phase compensation for InSAR measurements. In this paper, we present a Faraday rotation (FR) inversion method and corresponding procedure to compensate the ionospheric error for SAR interferograms and to detect the variations of small-scale ionospheric disturbances. This method retrieves the absolute total electron content (TEC) based on the FR estimation and corrects the ionospheric error for synthetic aperture radar interferometry (InSAR) measurements by transforming the differential TEC into the ionospheric phase. In two selected study cases, located in high latitude and equatorial regions where ionospheric disturbances occur frequently, we test the method using the Phased Array L-band Synthetic Aperture Radar (PALSAR) full-polarimetric SAR images. Our results show that the proposed procedure can effectively compensate the ionospheric phase. In order to validate the results, we present the results of ionospheric phase compensation based on the split-spectrum method as a comparison to the proposed method. To analyze the ability of our proposed method in detecting small-scale ionospheric disturbances, TEC derived from FR estimation are also compared with those derived from the global ionosphere maps (GIM). Our research provides a robust choice for the correction of ionospheric error in SAR interferograms. It also provides a powerful tool to measure small-scale ionospheric structure.

摘要

电离层误差会对合成孔径雷达(SAR)信号产生显著影响,尤其是在L波段及更低频率的SAR系统中。电离层畸变与地形和地面形变信号混合在一起,降低了干涉测量的精度。此外,由于其快速变化,往往难以检测到小尺度电离层结构,并且可能对干涉合成孔径雷达(InSAR)测量的电离层相位补偿产生更大影响。在本文中,我们提出了一种法拉第旋转(FR)反演方法及相应流程,用于补偿SAR干涉图的电离层误差并检测小尺度电离层扰动的变化。该方法基于FR估计获取绝对总电子含量(TEC),并通过将差分TEC转换为电离层相位来校正合成孔径雷达干涉测量(InSAR)的电离层误差。在两个选定的、电离层扰动频繁发生的高纬度和赤道地区的研究案例中,我们使用相控阵L波段合成孔径雷达(PALSAR)全极化SAR图像对该方法进行了测试。我们的结果表明,所提出的流程能够有效补偿电离层相位。为了验证结果,我们给出了基于分裂频谱法的电离层相位补偿结果,以便与所提出的方法进行比较。为了分析我们所提出的方法检测小尺度电离层扰动的能力,还将FR估计得出的TEC与全球电离层图(GIM)得出的TEC进行了比较。我们的研究为校正SAR干涉图中的电离层误差提供了一种可靠的选择。它还提供了一个测量小尺度电离层结构的有力工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验