Suppr超能文献

将 14 个扁桃砧木的不同盐度响应与生理、生化和遗传决定因素联系起来。

Linking diverse salinity responses of 14 almond rootstocks with physiological, biochemical, and genetic determinants.

机构信息

USDA-ARS, U.S. Salinity Lab, 450 W Big Springs Road, Riverside, CA, 92507, USA.

Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences (CAAS), Utah State University (USU), Logan, UT, 85332, USA.

出版信息

Sci Rep. 2020 Dec 3;10(1):21087. doi: 10.1038/s41598-020-78036-4.

Abstract

Fourteen commercial almond rootstocks were tested under five types of irrigation waters to understand the genetic, physiological, and biochemical bases of salt-tolerance mechanisms. Treatments included control (T1) and four saline water treatments dominant in sodium-sulfate (T2), sodium-chloride (T3), sodium-chloride/sulfate (T4), and calcium/magnesium-chloride/sulfate (T5). T3 caused the highest reduction in survival rate and trunk diameter, followed by T4 and T2, indicating that Na and, to a lesser extent, Cl were the most toxic ions to almond rootstocks. Peach hybrid (Empyrean 1) and peach-almond hybrids (Cornerstone, Bright's Hybrid 5, and BB 106) were the most tolerant to salinity. Rootstock's performance under salinity correlated highly with its leaf Na and Cl concentrations, indicating that Na and Cl exclusion is crucial for salinity tolerance in Prunus. Photosynthetic rate correlated with trunk diameter and proline leaf ratio (T3/T1) significantly correlated with the exclusion of Na and Cl, which directly affected the survival rate. Expression analyses of 23 genes involved in salinity stress revealed that the expression differences among genotypes were closely associated with their performance under salinity. Our genetic, molecular, and biochemical analyses allowed us to characterize rootstocks based on component traits of the salt-tolerance mechanisms, which may facilitate the development of highly salt-tolerant rootstocks.

摘要

对 14 种商业杏仁砧木进行了 5 种灌溉水类型的测试,以了解耐盐机制的遗传、生理和生化基础。处理包括对照(T1)和 4 种以硫酸钠(T2)、氯化钠(T3)、氯化钠/硫酸盐(T4)和钙/镁氯化物/硫酸盐(T5)为主的盐处理。T3 导致存活率和树干直径下降最大,其次是 T4 和 T2,表明 Na 和在较小程度上 Cl 是对杏仁砧木最具毒性的离子。桃杂种(Empyrean 1)和桃-杏仁杂种(Cornerstone、Bright's Hybrid 5 和 BB 106)对盐度最耐受。砧木在盐度下的表现与叶片 Na 和 Cl 浓度高度相关,表明 Na 和 Cl 的排除对于 Prunus 的耐盐性至关重要。光合速率与树干直径显著相关,脯氨酸叶片比(T3/T1)与 Na 和 Cl 的排除显著相关,这直接影响存活率。参与盐胁迫的 23 个基因的表达分析表明,基因型之间的表达差异与其在盐胁迫下的表现密切相关。我们的遗传、分子和生化分析使我们能够根据耐盐机制的组成特征对砧木进行分类,这可能有助于开发高度耐盐的砧木。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de78/7712888/82d4e80d301c/41598_2020_78036_Fig1_HTML.jpg

相似文献

2
Ion homeostasis, osmoregulation, and physiological changes in the roots and leaves of pistachio rootstocks in response to salinity.
Protoplasma. 2018 Sep;255(5):1349-1362. doi: 10.1007/s00709-018-1235-z. Epub 2018 Mar 12.
3
Possible involvement of polyphenols and polyamines in salt tolerance of almond rootstocks.
Plant Physiol Biochem. 2011 Nov;49(11):1313-22. doi: 10.1016/j.plaphy.2011.08.009. Epub 2011 Aug 31.
4
Similar and divergent responses to salinity stress of jamun ( L. Skeels) genotypes.
PeerJ. 2024 May 14;12:e17311. doi: 10.7717/peerj.17311. eCollection 2024.
6
Root system response to salt stress in grapevines (Vitis spp.): A link between root structure and salt exclusion.
Plant Sci. 2022 Dec;325:111460. doi: 10.1016/j.plantsci.2022.111460. Epub 2022 Sep 16.
7
Investigation of Salt Tolerance Mechanisms Across a Root Developmental Gradient in Almond Rootstocks.
Front Plant Sci. 2021 Jan 5;11:595055. doi: 10.3389/fpls.2020.595055. eCollection 2020.
9
Salt sensitivity in chickpea is determined by sodium toxicity.
Planta. 2016 Sep;244(3):623-37. doi: 10.1007/s00425-016-2533-3. Epub 2016 Apr 25.

引用本文的文献

3
Rootstock Breeding of Stone Fruits Under Modern Cultivation Regime: Current Status and Perspectives.
Plants (Basel). 2025 Apr 27;14(9):1320. doi: 10.3390/plants14091320.
5
Strategies for combating plant salinity stress: the potential of plant growth-promoting microorganisms.
Front Plant Sci. 2024 Jul 15;15:1406913. doi: 10.3389/fpls.2024.1406913. eCollection 2024.
6
Insight into Physiological and Biochemical Determinants of Salt Stress Tolerance in Tetraploid Citrus.
Antioxidants (Basel). 2023 Aug 19;12(8):1640. doi: 10.3390/antiox12081640.
9
Morpho-Physiological, Biochemical, and Genetic Responses to Salinity in .
Plants (Basel). 2021 Apr 20;10(4):808. doi: 10.3390/plants10040808.

本文引用的文献

1
Redomesticating Almond to Meet Emerging Food Safety Needs.
Front Plant Sci. 2020 Jun 12;11:778. doi: 10.3389/fpls.2020.00778. eCollection 2020.
2
Regulation of K Nutrition in Plants.
Front Plant Sci. 2019 Mar 20;10:281. doi: 10.3389/fpls.2019.00281. eCollection 2019.
3
Molecular characterization and expression analysis of the Na/H exchanger gene family in Medicago truncatula.
Funct Integr Genomics. 2018 Mar;18(2):141-153. doi: 10.1007/s10142-017-0581-9. Epub 2017 Dec 26.
4
Alcohol dehydrogenase 1 (ADH1) confers both abiotic and biotic stress resistance in Arabidopsis.
Plant Sci. 2017 Sep;262:24-31. doi: 10.1016/j.plantsci.2017.05.013. Epub 2017 Jun 6.
5
Salt Tolerance in Crops: Not Only a Matter of Gene Regulation.
Plant Physiol. 2017 Jul;174(3):1287-1288. doi: 10.1104/pp.17.00747.
6
A Magnesium Transporter OsMGT1 Plays a Critical Role in Salt Tolerance in Rice.
Plant Physiol. 2017 Jul;174(3):1837-1849. doi: 10.1104/pp.17.00532. Epub 2017 May 9.
7
Evaluation of proline functions in saline conditions.
Phytochemistry. 2017 Aug;140:52-68. doi: 10.1016/j.phytochem.2017.04.016. Epub 2017 Apr 28.
9
Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants.
Genet Mol Biol. 2017;40(1 suppl 1):326-345. doi: 10.1590/1678-4685-GMB-2016-0106. Epub 2017 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验