Blancon Jean-Christophe, Even Jacky, Stoumpos Costas C, Kanatzidis Mercouri G, Mohite Aditya D
Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
Univ Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, Rennes, France.
Nat Nanotechnol. 2020 Dec;15(12):969-985. doi: 10.1038/s41565-020-00811-1. Epub 2020 Dec 4.
Achieving technologically relevant performance and stability for optoelectronics, energy conversion, photonics, spintronics and quantum devices requires creating atomically precise materials with tailored homo- and hetero-interfaces, which can form functional hierarchical assemblies. Nature employs tunable sequence chemistry to create complex architectures, which efficiently transform matter and energy, however, in contrast, the design of synthetic materials and their integration remains a long-standing challenge. Organic-inorganic two-dimensional halide perovskites (2DPKs) are organic and inorganic two-dimensional layers, which self-assemble in solution to form highly ordered periodic stacks. They exhibit a large compositional and structural phase space, which has led to novel and exciting physical properties. In this Review, we discuss the current understanding in the structure and physical properties of 2DPKs from the monolayers to assemblies, and present a comprehensive comparison with conventional semiconductors, thereby providing a broad understanding of low-dimensional semiconductors that feature complex organic-inorganic hetero-interfaces.
要实现光电子学、能量转换、光子学、自旋电子学和量子器件在技术上相关的性能和稳定性,需要创建具有定制的同质和异质界面的原子精确材料,这些材料可以形成功能性分层组件。自然界利用可调节的序列化学来创建复杂的结构,从而有效地转化物质和能量,然而,相比之下,合成材料的设计及其集成仍然是一个长期存在的挑战。有机-无机二维卤化物钙钛矿(2DPK)是有机和无机二维层,它们在溶液中自组装形成高度有序的周期性堆叠。它们展现出巨大的组成和结构相空间,这导致了新颖且令人兴奋的物理性质。在本综述中,我们讨论了目前对从单层到组件的2DPK的结构和物理性质的理解,并与传统半导体进行了全面比较,从而对具有复杂有机-无机异质界面的低维半导体有广泛的了解。