Marjanović Milena, Singh Satish C, Gregory Emma P M, Grevemeyer Ingo, Growe Kevin, Wang Zhikai, Vaddineni Venkata, Laurencin Muriel, Carton Hélène, Gómez de la Peña Laura, Filbrandt Christian
Université de Paris, Institut de Physique du Globe de Paris, CNRS Paris France.
GEOMAR Helmholtz Centre of Ocean Research Kiel, RD4-Marine Geodynamics Kiel Germany.
J Geophys Res Solid Earth. 2020 Oct;125(10):e2020JB020275. doi: 10.1029/2020JB020275. Epub 2020 Sep 23.
Oceanic transform faults and fracture zones (FZs) represent major bathymetric features that keep the records of past and present strike-slip motion along conservative plate boundaries. Although they play an important role in ridge segmentation and evolution of the lithosphere, their structural characteristics, and their variation in space and time, are poorly understood. To address some of the unknowns, we conducted interdisciplinary geophysical studies in the equatorial Atlantic Ocean, the region where some of the most prominent transform discontinuities have been developing. Here we present the results of the data analysis in the vicinity of the Chain FZ, on the South American Plate. The crustal structure across the Chain FZ, at the contact between ∼10 and 24 Ma oceanic lithosphere, is sampled along seismic reflection and refraction profiles. We observe that the crustal thickness within and across the Chain FZ ranges from ∼4.6-5.9 km, which compares with the observations reported for slow-slipping transform discontinuities globally. We attribute this presence of close to normal oceanic crustal thickness within FZs to the mechanism of lateral dike propagation, previously considered to be valid only in fast-slipping environments. Furthermore, the combination of our results with other data sets enabled us to extend the observations to morphotectonic characteristics on a regional scale. Our broader view suggests that the formation of the transverse ridge is closely associated with a global plate reorientation that was also responsible for the propagation and for shaping lower-order Mid-Atlantic Ridge segmentation around the equator.
大洋转换断层和断裂带(FZ)是主要的海底地貌特征,保存着过去和现在沿保守型板块边界的走滑运动记录。尽管它们在洋脊分割和岩石圈演化中发挥着重要作用,但其结构特征以及时空变化仍知之甚少。为了解决一些未知问题,我们在赤道大西洋进行了跨学科地球物理研究,该区域是一些最显著的转换不连续带发育的地方。在此,我们展示了在南美洲板块上链状断裂带(Chain FZ)附近的数据分析结果。沿着地震反射和折射剖面,对跨越链状断裂带、位于约10至24 Ma大洋岩石圈接触处的地壳结构进行了采样。我们观察到,链状断裂带内部及两侧的地壳厚度在约4.6 - 5.9千米之间,这与全球范围内缓慢滑动的转换不连续带的观测结果相符。我们将断裂带内接近正常大洋地壳厚度的这种情况归因于横向岩脉扩展机制,该机制此前被认为仅在快速滑动环境中有效。此外,我们的结果与其他数据集相结合,使我们能够将观测扩展到区域尺度的地貌构造特征。我们更全面的观点表明,横向海岭的形成与全球板块重新定向密切相关,全球板块重新定向也导致了赤道附近较低阶的大西洋中脊分割的传播和形成。