Suppr超能文献

基于粒子群优化神经网络的未知非线性互联系统局部跟踪控制方案。

Particle swarm optimized neural networks based local tracking control scheme of unknown nonlinear interconnected systems.

机构信息

School of Systems Science, Beijing Normal University, Beijing 100875, China.

School of Automation, Guangdong University of Technology, Guangzhou 510006, China.

出版信息

Neural Netw. 2021 Feb;134:54-63. doi: 10.1016/j.neunet.2020.09.020. Epub 2020 Nov 11.

Abstract

In this paper, a local tracking control (LTC) scheme is developed via particle swarm optimized neural networks (PSONN) for unknown nonlinear interconnected systems. With the local input-output data, a local neural network identifier is constructed to approximate the local input gain matrix and the mismatched interconnection, which are utilized to derive the LTC. To solve the local Hamilton-Jacobi-Bellman equation, a local critic NN is established to estimate the proper local value function, which reflects the mismatched interconnection. The weight vector of the local critic NN is trained online by particle swarm optimization, thus the success rate of system execution is increased. The stability of the closed-loop unknown nonlinear interconnected system is guaranteed to be uniformly ultimately bounded through Lyapunov's direct method. Simulation results of two examples demonstrate the effectiveness of the developed PSONN-based LTC scheme.

摘要

本文针对未知非线性互联系统,提出了一种基于粒子群优化神经网络(PSONN)的局部跟踪控制(LTC)方案。利用局部输入输出数据,构造了局部神经网络辨识器来逼近局部输入增益矩阵和不匹配的互联项,进而推导出 LTC。为了解决局部哈密顿-雅可比-贝尔曼方程,建立了局部评价神经网络来估计合适的局部值函数,反映不匹配的互联项。局部评价神经网络的权向量通过粒子群优化在线训练,从而提高了系统执行的成功率。通过李雅普诺夫直接法保证了闭环未知非线性互联系统的稳定性是一致有界的。两个示例的仿真结果验证了所提出的基于 PSONN 的 LTC 方案的有效性。

相似文献

1
Particle swarm optimized neural networks based local tracking control scheme of unknown nonlinear interconnected systems.
Neural Netw. 2021 Feb;134:54-63. doi: 10.1016/j.neunet.2020.09.020. Epub 2020 Nov 11.
3
Decentralized optimal control of a class of interconnected nonlinear discrete-time systems by using online Hamilton-Jacobi-Bellman formulation.
IEEE Trans Neural Netw. 2011 Nov;22(11):1757-69. doi: 10.1109/TNN.2011.2160968. Epub 2011 Sep 29.
4
Discrete-time online learning control for a class of unknown nonaffine nonlinear systems using reinforcement learning.
Neural Netw. 2014 Jul;55:30-41. doi: 10.1016/j.neunet.2014.03.008. Epub 2014 Mar 28.
5
Observer-based event-triggered control for zero-sum games of input constrained multi-player nonlinear systems.
Neural Netw. 2021 Dec;144:101-112. doi: 10.1016/j.neunet.2021.08.012. Epub 2021 Aug 25.
6
Self-learning robust optimal control for continuous-time nonlinear systems with mismatched disturbances.
Neural Netw. 2018 Mar;99:19-30. doi: 10.1016/j.neunet.2017.11.022. Epub 2017 Dec 13.
7
Decentralized Neurocontroller Design With Critic Learning for Nonlinear-Interconnected Systems.
IEEE Trans Cybern. 2022 Nov;52(11):11672-11685. doi: 10.1109/TCYB.2021.3085883. Epub 2022 Oct 17.
9
Neural network robust tracking control with adaptive critic framework for uncertain nonlinear systems.
Neural Netw. 2018 Jan;97:11-18. doi: 10.1016/j.neunet.2017.09.005. Epub 2017 Sep 21.
10
Event-driven H control with critic learning for nonlinear systems.
Neural Netw. 2020 Dec;132:30-42. doi: 10.1016/j.neunet.2020.08.004. Epub 2020 Aug 20.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验