School of Systems Science, Beijing Normal University, Beijing 100875, China.
School of Automation, Guangdong University of Technology, Guangzhou 510006, China.
Neural Netw. 2021 Feb;134:54-63. doi: 10.1016/j.neunet.2020.09.020. Epub 2020 Nov 11.
In this paper, a local tracking control (LTC) scheme is developed via particle swarm optimized neural networks (PSONN) for unknown nonlinear interconnected systems. With the local input-output data, a local neural network identifier is constructed to approximate the local input gain matrix and the mismatched interconnection, which are utilized to derive the LTC. To solve the local Hamilton-Jacobi-Bellman equation, a local critic NN is established to estimate the proper local value function, which reflects the mismatched interconnection. The weight vector of the local critic NN is trained online by particle swarm optimization, thus the success rate of system execution is increased. The stability of the closed-loop unknown nonlinear interconnected system is guaranteed to be uniformly ultimately bounded through Lyapunov's direct method. Simulation results of two examples demonstrate the effectiveness of the developed PSONN-based LTC scheme.
本文针对未知非线性互联系统,提出了一种基于粒子群优化神经网络(PSONN)的局部跟踪控制(LTC)方案。利用局部输入输出数据,构造了局部神经网络辨识器来逼近局部输入增益矩阵和不匹配的互联项,进而推导出 LTC。为了解决局部哈密顿-雅可比-贝尔曼方程,建立了局部评价神经网络来估计合适的局部值函数,反映不匹配的互联项。局部评价神经网络的权向量通过粒子群优化在线训练,从而提高了系统执行的成功率。通过李雅普诺夫直接法保证了闭环未知非线性互联系统的稳定性是一致有界的。两个示例的仿真结果验证了所提出的基于 PSONN 的 LTC 方案的有效性。