Suppr超能文献

黑洞熵:深入探究

Black Hole Entropy: A Closer Look.

作者信息

Tsallis Constantino

机构信息

Centro Brasileiro de Pesquisas Físicas and National Institute of Science and Technology of Complex Systems, Rua Xavier Sigaud 150, Rio de Janeiro 22290-180, RJ, Brazil.

Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.

出版信息

Entropy (Basel). 2019 Dec 22;22(1):17. doi: 10.3390/e22010017.

Abstract

In many papers in the literature, author(s) express their perplexity concerning the fact that the ( 3 + 1 ) black-hole 'thermodynamical' entropy appears to be proportional to its area and not to its volume, and would therefore seemingly be nonextensive, or, to be more precise, subextensive. To discuss this question on more clear terms, a non-Boltzmannian entropic functional noted S δ was applied [Tsallis and Cirto, Eur. Phys. J. C 73, 2487 (2013)] to this complex system which exhibits the so-called area-law. However, some nontrivial physical points still remain open, which we revisit now. This discussion is also based on the fact that the well known Bekenstein-Hawking entropy can be expressed as being proportional to the event horizon area divided by the square of the Planck length.

摘要

在文献中的许多论文里,作者们对这样一个事实表示困惑:(3 + 1)维黑洞的“热力学”熵似乎与其面积成正比,而非与其体积成正比,因此表面上似乎是非广延的,或者更确切地说,是次广延的。为了更清晰地讨论这个问题,一个名为(S_{\delta})的非玻尔兹曼熵泛函[Tsallis和Cirto,《欧洲物理杂志C》73,2487(2013)]被应用于这个呈现所谓面积律的复杂系统。然而,一些重要的物理问题仍然悬而未决,我们现在重新审视这些问题。这个讨论也是基于这样一个事实:著名的贝肯斯坦 - 霍金熵可以表示为与事件视界面积除以普朗克长度的平方成正比。

相似文献

1
Black Hole Entropy: A Closer Look.
Entropy (Basel). 2019 Dec 22;22(1):17. doi: 10.3390/e22010017.
4
Comment on "Black Hole Entropy: A Closer Look".
Entropy (Basel). 2020 Oct 1;22(10):1110. doi: 10.3390/e22101110.
5
Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Aug;78(2 Pt 1):021102. doi: 10.1103/PhysRevE.78.021102. Epub 2008 Aug 5.
7
Entropy and Geometric Objects.
Entropy (Basel). 2018 Jun 9;20(6):453. doi: 10.3390/e20060453.
8
Universal canonical black hole entropy.
Phys Rev Lett. 2004 Apr 9;92(14):141301. doi: 10.1103/PhysRevLett.92.141301. Epub 2004 Apr 6.
9
Logarithmic correction to the bekenstein-hawking entropy.
Phys Rev Lett. 2000 Jun 5;84(23):5255-7. doi: 10.1103/PhysRevLett.84.5255.
10
Entanglement Entropy of Black Holes.
Living Rev Relativ. 2011;14(1):8. doi: 10.12942/lrr-2011-8. Epub 2011 Oct 21.

本文引用的文献

1
Modified cosmology through nonextensive horizon thermodynamics.
Eur Phys J C Part Fields. 2018;78(12):993. doi: 10.1140/epjc/s10052-018-6480-y. Epub 2018 Dec 5.
2
Horizon Entropy from Quantum Gravity Condensates.
Phys Rev Lett. 2016 May 27;116(21):211301. doi: 10.1103/PhysRevLett.116.211301. Epub 2016 May 24.
3
Four-qubit entanglement classification from string theory.
Phys Rev Lett. 2010 Sep 3;105(10):100507. doi: 10.1103/PhysRevLett.105.100507. Epub 2010 Sep 2.
4
Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Aug;78(2 Pt 1):021102. doi: 10.1103/PhysRevE.78.021102. Epub 2008 Aug 5.
5
Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15377-82. doi: 10.1073/pnas.0503807102. Epub 2005 Oct 17.
6
Black Hole Entropy from Loop Quantum Gravity.
Phys Rev Lett. 1996 Oct 14;77(16):3288-3291. doi: 10.1103/PhysRevLett.77.3288.
7
Entropy and area.
Phys Rev Lett. 1993 Aug 2;71(5):666-669. doi: 10.1103/PhysRevLett.71.666.
8
String theory and the principle of black hole complementarity.
Phys Rev Lett. 1993 Oct 11;71(15):2367-2368. doi: 10.1103/PhysRevLett.71.2367.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验