Razumova Ksenia A, Andreev Valerii F, Kasyanova Nadezhda V, Lysenko Sergey E
Kurchatov Complex of Thermonuclear Energy and Plasma Technologies, NRC 'Kurchatov Institute', 123182 Moscow, Russia.
General Physics Chair, Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Moscow, Russia.
Entropy (Basel). 2019 Dec 30;22(1):53. doi: 10.3390/e22010053.
In studying the hot plasma behavior in tokamak devices, the classical approach for collisional processes is traditionally used. This approach leaves unexplained a number of phenomena observed in experiments related to plasma energy confinement. Further, it is well known that tokamak plasma is always turbulent and self-organized. In the present paper, we show that the nonequilibrium thermodynamics approach allows us to explain many observed dependences and paradoxes; for example, puffing of impurities results in confinement improvement if zones of plasma cooling by impurities and additional plasma heating are not overlapped. The analysis of the experimental results shows the important role of radiation losses at the plasma edge in the processes determining its total energy confinement. It is shown that the generally accepted dependence of energy confinement on plasma density is not quite adequate because it is a consequence of dependence on radiation losses. The phenomenon of the appearance of internal transport barriers and magnetic islands can also be explained by plasma self-organization. The obtained results may be taken into account when calculating the operation of a future tokamak reactor.
在研究托卡马克装置中的热等离子体行为时,传统上采用经典的碰撞过程方法。这种方法无法解释在与等离子体能量约束相关的实验中观察到的许多现象。此外,众所周知,托卡马克等离子体总是湍流且自组织的。在本文中,我们表明非平衡热力学方法使我们能够解释许多观察到的相关性和悖论;例如,如果杂质冷却等离子体的区域与额外的等离子体加热区域不重叠,注入杂质会导致约束改善。对实验结果的分析表明,等离子体边缘的辐射损失在决定其总能量约束的过程中起着重要作用。结果表明,普遍接受的能量约束对等离子体密度的依赖性并不完全充分,因为它是对辐射损失依赖性的结果。内部输运屏障和磁岛出现的现象也可以用等离子体自组织来解释。在计算未来托卡马克反应堆的运行时,可以考虑所获得的结果。