Suppr超能文献

Ar-DAD:阿拉伯语多样化音频数据集。

Ar-DAD: Arabic diversified audio dataset.

作者信息

Lataifeh Mohammed, Elnagar Ashraf

机构信息

Department of Computer Science, University of Sharjah, Sharjah 27272, United Arab Emirates.

出版信息

Data Brief. 2020 Nov 7;33:106503. doi: 10.1016/j.dib.2020.106503. eCollection 2020 Dec.

Abstract

The automatic identification and verification of speakers through representative audio continue to gain the attention of many researchers with diverse domains of applications. Despite this diversity, the availability of classified and categorized multi-purpose Arabic audio libraries is scarce. Therefore, we introduce a large Arabic-based audio clips dataset (15810 clips) of 30 popular reciters cantillating 37 chapters from the Holy Quran. These chapters have a variable number of verses saved to different subsequent folders, where each verse is allocated one folder containing 30 audio clips for the declared reciters covering the same textual content. An additional 397 audio clips for 12 competent imitators of the top reciters are collected based on popularity and number of views/downloads to allow for cross-comparison of text, reciters, and authenticity. Based on the volume, quality, and rich diversity of this dataset we anticipate a wide range of deployments for speaker identification, in addition to setting a new direction for the structure and organization of similar large audio clips dataset.

摘要

通过代表性音频进行说话者的自动识别和验证,持续吸引着众多来自不同应用领域的研究人员。尽管应用领域多样,但分类和归类的多用途阿拉伯语音频库却很匮乏。因此,我们引入了一个大型的基于阿拉伯语的音频片段数据集(15810个片段),该数据集由30位受欢迎的诵经者吟诵《古兰经》的37章组成。这些章节的经文数量不等,并保存到不同的后续文件夹中,其中每一节经文都分配有一个文件夹,该文件夹包含30个音频片段,由宣称的诵经者吟诵相同的文本内容。此外,根据受欢迎程度和观看量/下载量,收集了12位顶级诵经者的有能力的模仿者的397个音频片段,以便对文本、诵经者和真实性进行交叉比较。基于该数据集的规模、质量和丰富的多样性,我们预计除了为类似的大型音频片段数据集的结构和组织设定新方向外,它还将在说话者识别方面有广泛的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6943/7689366/ebfe1684e1ab/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验