Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India.
Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India.
Biotechnol Bioeng. 2021 Mar;118(3):1286-1304. doi: 10.1002/bit.27651. Epub 2020 Dec 25.
The three-dimensional (3D) cell culture models serve as the interface between conventional two-dimensional (2D) monolayer culture and animal models. 3D culture offers the best possible model system to understand the pathophysiology of human pathogens such as hepatitis C virus (HCV), which lacks a small animal model, due to narrow host tropism and non-permissiveness of murine hepatocytes. In this study, functionally robust spheroids of HCV permissive Huh7.5 cells were generated, assisted by the temperature or pH-responsive polymers PNIPAAm and Eudragit respectively, followed by the long-term growth of the multilayered 3D aggregates in poly(ethylene glycol) (PEG)-alginate-gelatin (PAG) cryogel. The human serum albumin (HSA), marker of hepatic viability was detected up to 600 ng/ml on 24th day of culture. The 3D spheroid culture exhibited a distinct morphology and transcript levels with the upregulation of hepato-specific transcripts, nuclear factor 4α (HNF4α), transthyretin (TTr), albumin (Alb), phase I and phase II drug-metabolizing genes. The two most important phase I enzymes CYP3A4 and CYP2D6, together responsible for 90% metabolism of drugs exhibited up to 9- and 12-fold increment, respectively in transcripts. The 3D culture was highly permissive to HCV infection and supported higher multiplicity of infection compared to monolayer Huh7.5 culture. Quantitation of high levels of HSA (500-200 ng/ml) in circulation in mice for 32 days asserted integration with host vasculature and in vivo establishment of 3D culture implants as an ectopic human hepatic tissue in mice. The study demonstrates the 3D spheroid Huh7.5 culture as a model for HCV studies and screening potential for anti-HCV drug candidates.
三维(3D)细胞培养模型是传统二维(2D)单层培养与动物模型之间的接口。3D 培养提供了尽可能好的模型系统,以了解丙型肝炎病毒(HCV)等人类病原体的病理生理学,由于宿主嗜性狭窄和鼠肝细胞的非允许性,HCV 缺乏小动物模型。在这项研究中,通过温度或 pH 响应聚合物 PNIPAAm 和 Eudragit 分别辅助,生成了功能强大的 HCV 允许的 Huh7.5 细胞球体,然后在聚(乙二醇)(PEG)-海藻酸钠-明胶(PAG)冷冻凝胶中长期生长多层 3D 聚集体。人血清白蛋白(HSA)是肝存活的标志物,在培养的第 24 天可检测到高达 600ng/ml。3D 球体培养表现出独特的形态和转录水平,肝特异性转录物、核因子 4α(HNF4α)、转甲状腺素蛋白(TTr)、白蛋白(Alb)、I 相和 II 相药物代谢基因上调。两种最重要的 I 相酶 CYP3A4 和 CYP2D6 分别负责 90%的药物代谢,其转录物分别增加了 9 倍和 12 倍。3D 培养对 HCV 感染高度允许,与单层 Huh7.5 培养相比,支持更高的感染复数。在小鼠中循环高水平 HSA(500-200ng/ml)的定量持续 32 天,证明了与宿主血管系统的整合以及 3D 培养植入物作为小鼠异位人肝组织的体内建立。该研究表明 3D 球体 Huh7.5 培养是 HCV 研究和筛选抗 HCV 药物候选物的模型。