Shanghai Academy of Environmental Sciences, 200233, Shanghai, China.
Shanghai Academy of Environmental Sciences, 200233, Shanghai, China.
Water Res. 2021 Feb 15;190:116670. doi: 10.1016/j.watres.2020.116670. Epub 2020 Nov 26.
Production of methane (CH), an essential anthropogenic greenhouse gas, from municipal sewer sediment is a problem deserving intensive attention. Based on long-term laboratory batch tests in conjunction with 16 s rRNA gene sequencing and metagenomics, this study provides the first detailed assessment of the variable sediment CH production in response to different pollution source-associated sewer sediment types and hydrological patterns, while addressing the role of the sediment microbiome. The high CH-production capability of sanitary sewer sediment is shaped by enriched biologically active substrate and dominated by acetoclastic methanogenesis (genus Methanosaeta). Moreover, it involves syntrophic interactions among fermentation bacteria, hydrogen-producing acetogens and methanogens. Distinct source-associated microbial species, denitrifying bacteria and sulfate-reducing bacteria occur in storm sewer and illicit discharge-associated (IDA) storm sewer sediments. This reveals their insufficient microbial function capabilities to support efficient methanogenesis. Hydrogenotrophic methanogenesis (genus Methanobacterium) prevails in both these sediments. In this context, storm sewer sediment has an extremely low CH-production capability, while IDA storm sewer sediment still shows significant carbon emission through a possibly unique mechanism. Hydrological connections promote the sewer sediment biodegradability and CH-production capability. In contrast, hydrological disconnection facilitates the prevalence of acetoclastic methanogenesis, sulfate-reducing enzymes, denitrification enzymes and the sulfur-utilizing chemolithoautotrophic denitrifier, which drastically decreases CH production. Turbulent suspension of sediments results in relative stagnation of methanogenesis. This work bridges the knowledge gap and will help to stimulate and guide the resolution of 'bottom-up' system-scale carbon budgets and GHG sources, as well as the target CH abatement interventions.
城市污水沉积物中甲烷(CH)的产生是一种人为温室气体,值得深入关注。本研究基于长期实验室批处理实验、16s rRNA 基因测序和宏基因组学,首次详细评估了不同污染源相关污水沉积物类型和水文模式对沉积物 CH 产生的可变性,同时探讨了沉积物微生物组的作用。卫生污水沉积物具有高 CH 产生能力,这是由丰富的生物活性基质塑造的,主要由乙酸营养型产甲烷作用(属 Methanosaeta)主导。此外,它涉及发酵细菌、产氢产乙酸菌和产甲烷菌之间的协同相互作用。污水和雨水管道泄漏(IDA)相关污水沉积物中存在独特的与污染源相关的微生物物种,如反硝化细菌和硫酸盐还原菌。这表明它们的微生物功能不足以支持高效的产甲烷作用。氢营养型产甲烷作用(属 Methanobacterium)在这两种沉积物中占主导地位。在这种情况下,雨水污水沉积物的 CH 产生能力极低,而 IDA 雨水污水沉积物仍通过一种可能独特的机制显示出显著的碳排放。水力连接促进污水沉积物的生物降解性和 CH 产生能力。相反,水力不连接有利于乙酸营养型产甲烷作用、硫酸盐还原酶、反硝化酶和利用硫的化能自养反硝化菌的流行,这极大地降低了 CH 的产生。沉积物的紊流悬浮导致产甲烷作用相对停滞。这项工作填补了知识空白,将有助于激发和指导“自下而上”的系统尺度碳预算和温室气体源的解决,以及针对 CH 减排的干预措施。