Suppr超能文献

基于多基因评分模型估计环境和遗传父母影响的参数估计的偏差和精度。

Bias and Precision of Parameter Estimates from Models Using Polygenic Scores to Estimate Environmental and Genetic Parental Influences.

机构信息

Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, USA.

Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, USA.

出版信息

Behav Genet. 2021 May;51(3):279-288. doi: 10.1007/s10519-020-10033-9. Epub 2020 Dec 10.

Abstract

In a companion paper Balbona et al. (Behav Genet, in press), we introduced a series of causal models that use polygenic scores from transmitted and nontransmitted alleles, the offspring trait, and parental traits to estimate the variation due to the environmental influences the parental trait has on the offspring trait (vertical transmission) as well as additive genetic effects. These models also estimate and account for the gene-gene and gene-environment covariation that arises from assortative mating and vertical transmission respectively. In the current study, we simulated polygenic scores and phenotypes of parents and offspring under genetic and vertical transmission scenarios, assuming two types of assortative mating. We instantiated the models from our companion paper in the OpenMx software, and compared the true values of parameters to maximum likelihood estimates from models fitted on the simulated data to quantify the bias and precision of estimates. We show that parameter estimates from these models are unbiased when assumptions are met, but as expected, they are biased to the degree that assumptions are unmet. Standard errors of the estimated variances due to vertical transmission and to genetic effects decrease with increasing sample sizes and with increasing [Formula: see text] values of the polygenic score. Even when the polygenic score explains a modest amount of trait variation ([Formula: see text]), standard errors of these standardized estimates are reasonable ([Formula: see text]) for [Formula: see text] trios, and can even be reasonable for smaller sample sizes (e.g., down to 4K) when the polygenic score is more predictive. These causal models offer a novel approach for understanding how parents influence their offspring, but their use requires polygenic scores on relevant traits that are modestly predictive (e.g., [Formula: see text] as well as datasets with genomic and phenotypic information on parents and offspring. The utility of polygenic scores for elucidating parental influences should thus serve as additional motivation for large genomic biobanks to perform GWAS's on traits that may be relevant to parenting and to oversample close relatives, particularly parents and offspring.

摘要

在一篇配套论文中,Balbona 等人(Behav Genet,即将出版)介绍了一系列因果模型,这些模型使用来自传递和未传递等位基因、后代特征和父母特征的多基因分数来估计由于父母特征对后代特征的环境影响(垂直传递)以及加性遗传效应引起的变异。这些模型还估计和解释了由于同源交配和垂直传递分别引起的基因-基因和基因-环境共变。在当前的研究中,我们模拟了遗传和垂直传递情景下父母和后代的多基因分数和表型,假设了两种类型的同源交配。我们在 OpenMx 软件中实例化了我们的配套论文中的模型,并将模拟数据拟合模型的最大似然估计值与模型中的真实参数值进行了比较,以量化估计的偏差和精度。我们表明,在满足假设的情况下,这些模型的参数估计是无偏的,但正如预期的那样,它们会偏离假设的程度。由于垂直传递和遗传效应引起的估计方差的标准误差随着样本量的增加和多基因分数的 [Formula: see text] 值的增加而减小。即使多基因分数解释了相当数量的特征变异([Formula: see text]),这些标准化估计的标准误差对于 [Formula: see text] 三胞胎也是合理的([Formula: see text]),并且即使在多基因分数更具预测性时,对于较小的样本量(例如,低至 4K)也可以合理。这些因果模型为理解父母如何影响子女提供了一种新方法,但它们的使用需要具有适度预测性的相关特征的多基因分数(例如,[Formula: see text])以及具有父母和子女基因组和表型信息的数据集。多基因分数对于阐明父母影响的效用因此应该成为大型基因组生物库的额外动力,以便对可能与育儿相关的特征进行 GWAS,并对近亲,特别是父母和子女进行过度采样。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0b1/8093160/c25fb0afd5e4/10519_2020_10033_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验