Water Treatment & Desalination Unit, Hydrogeochemistry Department, Desert Research Center, El-Matariya, Cairo, P.O.B 11753, Egypt.
Chemosphere. 2021 Feb;265:128999. doi: 10.1016/j.chemosphere.2020.128999. Epub 2020 Dec 1.
A new approach of highly fluxes thin film nanocomposite (TFN) nanofiltration (NF) membranes is reported. The fabricated module was made by incorporation of commercial-AlO (CO.TFN) and camphor-AlONPs (CA.TFN) into polyamide layers throughout the interfacial polymerization method. A simple biological reduction technique was adopted in preparation of camphor-AlO NPs by using CinnamomumCamphora (CC) leaf extract. The crystallography of the commercial and camphor-AlO NPs was examined by XRD and FTIR analyses. The CO.TFN and CA.TFN membranes were characterized by determining their surface roughness, pore size, porosity, zeta potential and contact angle parameters. The morphology and the cross-sectional of the NF membranes were studied by atomic force microscope (AFM) and scanning electron microscope (SEM). NF performance was investigated at various AlO NPs loads, applied pressure, and time. The results, of the membranes fabricated at low cost, showed the high permeable flux and elimination of multivalent cations (Mg, Ca, and water softening). Incorporating 0.98 mM of camphor-AlO NPs into the TFC membrane increased the water flux up to 4 times compared to only 1.5 times for commercial-AlO NPs. Moreover, the salt rejection of CO.TFN and CA.TFN NF membranes increased to 95.1% and 96.5%, respectively for the feed solution (2 g/L NaSO at 25 °C). The optimized NF membrane module of 0.98 mM camphor-AlO-NPs (CA.TFN) shows the maximum water flux 69.0,62.2, 60.5 and 55.4 L/m.h for the feed solutions of following salts NaCl, NaSO, MgCl and MgSO with high salt rejections 92.4%, 96.5%, 91.7% and 95.3%, respectively. This proves that camphor-AlO NPs have a significant role in increasing the membrane hydrophilicity. Hence, the CA.TFN membrane module proved to be a promising candidate for the real brackish water desalination as that collected from Marsa Alam, Egypt.
一种新的高通量薄膜纳米复合(TFN)纳滤(NF)膜方法被报道。所制备的模块是通过界面聚合法将商业 AlO(CO.TFN)和樟脑 AlONPs(CA.TFN)掺入聚酰胺层中制成的。采用简单的生物还原技术,用肉桂叶提取物制备樟脑 AlO NPs。通过 XRD 和 FTIR 分析对商业和樟脑 AlO NPs 的结晶度进行了检查。通过测定 CO.TFN 和 CA.TFN 膜的表面粗糙度、孔径、孔隙率、Zeta 电位和接触角参数对 CO.TFN 和 CA.TFN 膜进行了表征。通过原子力显微镜(AFM)和扫描电子显微镜(SEM)研究了 NF 膜的形态和横截面。在不同的 AlO NPs 负载、施加压力和时间下研究了 NF 性能。结果表明,用低成本制备的膜具有高通量和去除多价阳离子(Mg、Ca 和水软化)的特性。将 0.98mM 的樟脑 AlO NPs 掺入 TFC 膜中,与仅掺入 1.5mM 商业 AlO NPs 相比,水通量增加了 4 倍。此外,CO.TFN 和 CA.TFN NF 膜的盐截留率分别提高到 95.1%和 96.5%,对于进料溶液(25°C 时 2g/L 的 NaSO)。优化的 0.98mM 樟脑 AlO-NPs(CA.TFN)NF 膜模块在以下盐的进料溶液中表现出最大水通量 69.0、62.2、60.5 和 55.4 L/m.h,NaCl、NaSO、MgCl 和 MgSO 的盐截留率分别为 92.4%、96.5%、91.7%和 95.3%。这证明樟脑 AlO NPs 对提高膜亲水性有重要作用。因此,CA.TFN 膜模块被证明是一种很有前途的候选者,可用于从埃及马萨阿拉姆收集的实际微咸水脱盐。