Suppr超能文献

运用谱效关系结合液相色谱-飞行时间质谱筛选赶山鞭提取物总黄酮中的抗心律失常成分

Using Spectrum-Effect Relationships Coupled with LC-TOF-MS to Screen Anti-arrhythmic Components of the Total Flavonoids in Hypericum attenuatum Extracts.

作者信息

Feng Yufei, Teng Lin, Wang Yanli, Gao Yanyu, Ma Yuxuan, Zhou Haichun, Cai Guofeng, Li Ji

机构信息

Laboratory of Chinese Materia Medica in Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China.

The Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China.

出版信息

J Chromatogr Sci. 2021 Feb 15;59(3):246-261. doi: 10.1093/chromsci/bmaa101.

Abstract

This research explored the HPLC fingerprints of Hypericum attenuatum Choisy, which has anti-arrhythmic activity. HPLC was adopted to perform a determination of chemical fingerprints of H. attenuatum specimens acquired through seven distinct sources. The anti-arrhythmic activity of each H. attenuatum sample was obtained through pharmacodynamics experiments in animals. A regression analysis and correlation analysis were utilized to calculate the relationship of the peak and pharmacological effectiveness with the identified peak. Peaks numbered 5, 7, 13 and 14 in the fingerprint were regarded as the likely anti-arrhythmic agents. The fingerprint was compared with reference standards for identification of the correlative peaks. Liquid chromatography-time-of-flight-mass spectrometry was applied to identify its structure. As a consequence, a universal model was established for the utilization of HPLC to investigate anti-arrhythmic activity and the spectrum-effect relationship among H. attenuatum. This model is available for the discovery of the major bioactive constituents of Hypericum.

摘要

本研究探索了具有抗心律失常活性的细叶金丝桃的高效液相色谱指纹图谱。采用高效液相色谱法对来自七个不同来源的细叶金丝桃标本的化学指纹图谱进行测定。通过动物药效学实验获得每个细叶金丝桃样品的抗心律失常活性。利用回归分析和相关性分析来计算峰与药理作用以及已鉴定峰之间的关系。指纹图谱中的5号、7号、13号和14号峰被认为可能是抗心律失常剂。将该指纹图谱与对照标准品进行比较以鉴定相关峰。应用液相色谱-飞行时间质谱法鉴定其结构。因此,建立了一个通用模型,用于利用高效液相色谱法研究细叶金丝桃的抗心律失常活性和谱效关系。该模型可用于发现金丝桃属植物的主要生物活性成分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验