Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel.
Bioinspir Biomim. 2021 Jan 27;16(2). doi: 10.1088/1748-3190/abd2d2.
Biological structures such as bone, nacre and exoskeletons are organized hierarchically, with the degree of isotropy correlating with the length-scale. In these structures, the basic components are nanofibers or nanoplatelets, which are strong and stiff but anisotropic, whereas at the macrolevel, isotropy is preferred because the direction and magnitude of loads is unpredictable. The structural features and mechanisms, which drive the transition from anisotropy to isotropy across length scales, raise fundamental questions and are therefore the subject of the current study. Focusing on the tibia (fixed finger) of the scorpion pincer, bending tests of cuticle samples confirm the macroscale isotropy of the strength, stiffness, and toughness. Imaging analysis of the cuticle reveals an intricate multilayer laminated structure, with varying chitin-protein fiber orientations, arranged in eight hierarchical levels. We show that the cuticle flexural stiffness is increased by the existence of a thick intermediate layer, not seen before in the claws of crustaceans. Using laminate analysis to model the cuticle structure, we were able to correlate the nanostructure to the macro-mechanical properties, uncovering shear enhancing mechanisms at different length scales. These mechanisms, together with the hierarchical structure, are essential for achieving macro-scale isotropy. Interlaminar failure (ILF) analysis of the cuticle leads to an estimation of the protein matrix shear strength, previously not measured. A similar structural approach can be adopted to the design of future synthetic composites with balanced strength, stiffness, toughness, and isotropy.
生物结构,如骨骼、珍珠层和外骨骼,是按层次组织的,各向同性程度与长度尺度相关。在这些结构中,基本组成部分是纳米纤维或纳米片层,它们具有高强度和刚性,但各向异性,而在宏观尺度上,各向同性是首选,因为负载的方向和大小是不可预测的。从各向异性到各向同性的结构特征和转变机制提出了一些基本问题,因此成为当前研究的主题。本文以蝎子钳子的固定指(tibia)为研究对象,对表皮样本进行弯曲测试,证实了强度、刚度和韧性的宏观各向同性。对表皮的成像分析揭示了一种复杂的多层叠层结构,具有不同的几丁质-蛋白质纤维取向,排列在八个层次上。我们表明,通过存在一个厚的中间层,使表皮的弯曲刚度增加,而在甲壳类动物的爪子中以前没有观察到这种中间层。我们使用层合板分析来模拟表皮结构,将纳米结构与宏观力学性能相关联,揭示了不同长度尺度上的剪切增强机制。这些机制与分层结构一起,对于实现宏观各向同性至关重要。对表皮的层间失效(ILF)分析导致对以前未测量的蛋白质基质剪切强度的估计。这种类似的结构方法可以应用于未来具有平衡强度、刚度、韧性和各向同性的合成复合材料的设计。