Suppr超能文献

MINDWALC:挖掘可解释的、有区别的路径,用于对知识图中的节点进行分类。

MINDWALC: mining interpretable, discriminative walks for classification of nodes in a knowledge graph.

机构信息

IDLab, Ghent University - imec, Technologiepark-Zwijnaarde 126, Ghent, 9000, Belgium.

出版信息

BMC Med Inform Decis Mak. 2020 Dec 14;20(Suppl 4):191. doi: 10.1186/s12911-020-01134-w.

Abstract

BACKGROUND

Leveraging graphs for machine learning tasks can result in more expressive power as extra information is added to the data by explicitly encoding relations between entities. Knowledge graphs are multi-relational, directed graph representations of domain knowledge. Recently, deep learning-based techniques have been gaining a lot of popularity. They can directly process these type of graphs or learn a low-dimensional numerical representation. While it has been shown empirically that these techniques achieve excellent predictive performances, they lack interpretability. This is of vital importance in applications situated in critical domains, such as health care.

METHODS

We present a technique that mines interpretable walks from knowledge graphs that are very informative for a certain classification problem. The walks themselves are of a specific format to allow for the creation of data structures that result in very efficient mining. We combine this mining algorithm with three different approaches in order to classify nodes within a graph. Each of these approaches excels on different dimensions such as explainability, predictive performance and computational runtime.

RESULTS

We compare our techniques to well-known state-of-the-art black-box alternatives on four benchmark knowledge graph data sets. Results show that our three presented approaches in combination with the proposed mining algorithm are at least competitive to the black-box alternatives, even often outperforming them, while being interpretable.

CONCLUSIONS

The mining of walks is an interesting alternative for node classification in knowledge graphs. Opposed to the current state-of-the-art that uses deep learning techniques, it results in inherently interpretable or transparent models without a sacrifice in terms of predictive performance.

摘要

背景

利用图进行机器学习任务可以通过显式编码实体之间的关系为数据添加额外信息,从而获得更强的表达能力。知识图是领域知识的多关系、有向图表示。最近,基于深度学习的技术越来越受欢迎。它们可以直接处理这些类型的图,或者学习低维数值表示。虽然已经从经验上证明了这些技术具有出色的预测性能,但它们缺乏可解释性。在医疗保健等关键领域的应用中,这一点至关重要。

方法

我们提出了一种从知识图中挖掘可解释路径的技术,这些路径对于特定的分类问题非常有信息量。这些路径本身具有特定的格式,可以创建导致非常高效挖掘的数据结构。我们将这种挖掘算法与三种不同的方法结合起来,以对图中的节点进行分类。这些方法中的每一种在可解释性、预测性能和计算运行时间等不同维度上都表现出色。

结果

我们将我们的技术与四个基准知识图数据集上的知名黑盒替代方案进行了比较。结果表明,我们提出的三种方法与所提出的挖掘算法相结合,至少与黑盒替代方案具有竞争力,即使在可解释性方面也经常优于它们。

结论

在知识图中的节点分类中,路径挖掘是一种有趣的替代方法。与当前使用深度学习技术的最新技术相比,它产生了固有可解释或透明的模型,而不会牺牲预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d36/7734719/6235633698d2/12911_2020_1134_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验