Suppr超能文献

生物水壳缓解金属(类)污染及其潜在的固定化机制。

Biological aqua crust mitigates metal(loid) pollution and the underlying immobilization mechanisms.

机构信息

School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China.

School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, 510006, China.

出版信息

Water Res. 2021 Feb 15;190:116736. doi: 10.1016/j.watres.2020.116736. Epub 2020 Dec 8.

Abstract

Biocrust-mediated in situ bioremediation could be an alternative strategy to mitigate metal(loid) pollution in aquatic habitats. To better understand the roles of biocrusts in regulating the fate of metal(loid)s, we examined the morphology, composition and structure of biological aqua crusts (BAC) developed in the mine drainage of a representative Pb/Zn tailing pond, and tested their effectiveness for immobilizing typical metal(loid)s. Unlike terrestrial biocrusts, BAC results from an assembly of compounds produced by the strong microbial activity and mineral compounds present in the aquatic environment. The BAC exhibited a unique flexible, spongy and porous structure with a specific surface area of 12-22 m g, and was able to effectively concentrate various metal(loid)s (e.g. Cd, 0.26-0.60 g kg; Pb, 0.52-0.66 g kg; As, 10.4-24.3 g kg). The concentrations of metal(loid)s (e.g. Cd and As) in the BAC were even three to seven times higher than those in the source tailings, and more than 98% of immobilized metal(loid)s were present as the highly stable non-EDTA-exchangeable fraction. Adsorption on the well distributed micro-particles of the clay minerals (e.g. kaolinite) and the organic matters (2.0-2.7 wt.%) were found to be the major mechanisms for BAC to bind metal cations, whereas adsorption and coprecipitation on Fe/Mn oxide (e.g. FeOOH), was proposed to be the dominant pathway for accumulating metal(loid)s, especially As. The decrease in aqueous concentrations of the metal(loid)s along the drainage could be attributed in part to the scavenging effects of the BAC. These findings therefore provide new insights into the possible and efficient strategy for metal(loid) removal from water bodies, and highlighted the important role of BAC as a nature-based solution to benefit the bioremediation of mining area.

摘要

生物结皮介导的原位生物修复可能是减轻水生栖息地金属(类)污染的一种替代策略。为了更好地了解生物结皮在调节金属(类)命运中的作用,我们研究了在典型 Pb/Zn 尾矿池排污水体中形成的生物水壳(BAC)的形态、组成和结构,并测试了它们对固定典型金属(类)的有效性。与陆生生物结皮不同,BAC 是由强烈的微生物活动和水生环境中存在的矿物质化合物产生的化合物组装而成的。BAC 具有独特的灵活、海绵状和多孔结构,比表面积为 12-22 m²/g,能够有效地浓缩各种金属(类)(例如 Cd,0.26-0.60 g/kg;Pb,0.52-0.66 g/kg;As,10.4-24.3 g/kg)。BAC 中金属(类)(例如 Cd 和 As)的浓度甚至是源尾矿的三到七倍,超过 98%的固定金属(类)以高度稳定的非 EDTA 可交换态存在。研究发现,粘土矿物(如高岭石)和有机物(2.0-2.7wt.%)上均匀分布的微颗粒上的吸附是 BAC 结合金属阳离子的主要机制,而吸附和共沉淀在 Fe/Mn 氧化物(如 FeOOH)上则被认为是积累金属(类)的主要途径,尤其是 As。金属(类)在排水中浓度的降低部分归因于 BAC 的清除作用。这些发现为从水体中去除金属(类)提供了新的思路,并强调了 BAC 作为一种基于自然的解决方案在矿区生物修复中的重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验