Suppr超能文献

通过自适应平滑实现高保真像素超分辨复场重建

High-fidelity pixel-super-resolved complex field reconstruction via adaptive smoothing.

作者信息

Gao Yunhui, Cao Liangcai

出版信息

Opt Lett. 2020 Dec 15;45(24):6807-6810. doi: 10.1364/OL.409697.

Abstract

Pixel super-resolution (PSR) techniques have been developed to overcome the sampling limit in lensless digital holographic imaging. However, the inherent non-convexity of the PSR phase retrieval problem can potentially degrade reconstruction quality by causing the iterations to tend toward a false local minimum. Furthermore, the ill posedness of the up-sampling procedure renders PSR algorithms highly susceptible to noise. In this Letter, we propose a heuristic PSR algorithm with adaptive smoothing (AS-PSR) to achieve high-fidelity reconstruction. By automatically adjusting the intensity constraints on the estimated field, the algorithm can effectively locate the optimal solution and converge with high reconstruction quality, pushing the resolution toward the diffraction limit. The proposed method is verified experimentally within a coherent modulation phase retrieval framework, achieving a twofold improvement in resolution. The AS-PSR algorithm can be further applied to other phase retrieval methods based on alternating projection.

摘要

像素超分辨率(PSR)技术已被开发出来,以克服无透镜数字全息成像中的采样限制。然而,PSR相位恢复问题固有的非凸性可能会导致迭代趋向于虚假的局部最小值,从而潜在地降低重建质量。此外,上采样过程的不适定性使PSR算法极易受到噪声影响。在本信函中,我们提出了一种具有自适应平滑的启发式PSR算法(AS-PSR),以实现高保真重建。通过自动调整对估计场的强度约束,该算法能够有效地找到最优解,并以高重建质量收敛,将分辨率推向衍射极限。所提出的方法在相干调制相位恢复框架内通过实验得到验证,实现了分辨率两倍的提升。AS-PSR算法可进一步应用于基于交替投影的其他相位恢复方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验