Department of Chemistry, Maharshi Dayanand University, Rohtak, India.
University Institute of Engineering and Technology (UIET), Maharshi Dayanand University, Rohtak, India.
Luminescence. 2021 May;36(3):742-754. doi: 10.1002/bio.3998. Epub 2021 Jan 6.
An efficient and cost-effective technique, solution precipitation approach is adopted to synthesize five bright green luminescent terbium (III) complexes by employing the main β-hydroxy ketone ligand, 2-hydroxy-4-ethoxyacetophenone, and ancillary ligands like bathophenanthroline, 5,6-dimethyl-1,10-phenanthroline, 1,10-phenanthroline, and 2,2-bipyridyl. The elemental compositions and binding mode of ligand to terbium (III) ion can be validated by using energy dispersive X-ray analysis, elemental analysis, Fourier transform infrared, and proton nuclear magnetic resonance spectroscopy. The complexes are thermally stable up to 158°C and possess the cubic shaped particles as confirmed by thermogravimetric analysis and scanning electron microscopic study, respectively. The band-gap energy (3.02-2.92 eV) of complexes is reckoned through diffuse reflectance spectra, which tailors them as potential candidates in the field of military radars. The photoluminescence studies unveil that the complexes exhibit the bright green luminescence corresponding to D → F transition of Tb ion (548 nm) under the excitation wavelength of 395 or 397 nm. The Commission International de I'Eclairage chromaticity coordinates (x, y) and color purity substantiates the green emission of complexes. The energy transfer mechanism elucidates that the main ligand and ancillary ligands sensitize Tb ion, which in turn enhances the luminescence efficiency of the emissive layer of white organic light emitting diodes. The results reveal that the complexes are considered as good contenders in the field of display devices and laser technology. Lastly, in vitro antimicrobial and antioxidant activity proclaim the potent antimicrobial and antioxidant actions of complexes via tube dilution and 2, 2-diphenyl-1-picrylhydrazyl assays, respectively.
采用高效、经济的沉淀法合成了五个亮绿色的铽(III)配合物,使用的主要β-羟基酮配体为 2-羟基-4-乙氧基苯乙酮,辅助配体为邻菲啰啉、5,6-二甲基-1,10-菲啰啉、1,10-菲啰啉和 2,2-联吡啶。通过能谱分析、元素分析、傅里叶变换红外光谱和质子核磁共振波谱可以验证配体与铽(III)离子的组成和键合方式。配合物的热稳定性高达 158°C,通过热重分析和扫描电子显微镜研究分别确定其具有立方形状的颗粒。通过漫反射光谱计算出配合物的能带隙能量(3.02-2.92 eV),使其成为军事雷达领域的潜在候选材料。荧光光谱研究表明,配合物在 395 或 397nm 激发波长下,对应于 Tb 离子的 D → F 跃迁,发出明亮的绿光。国际照明委员会色度坐标(x,y)和颜色纯度证实了配合物的绿光发射。能量转移机制表明,主要配体和辅助配体能敏化 Tb 离子,从而提高了白色有机发光二极管发射层的发光效率。结果表明,这些配合物在显示器件和激光技术领域具有广阔的应用前景。最后,通过管稀释法和 2,2-二苯基-1-苦基肼基法分别进行体外抗菌和抗氧化活性研究,证明了配合物具有较强的抗菌和抗氧化活性。