Suppr超能文献

外显子身份影响外显子变异引起的剪接和计算机预测效果。

Exon identity influences splicing induced by exonic variants and in silico prediction efficacy.

机构信息

INSERM, U955, Institut de Recherche Henri Mondor, IMRB, Créteil, France.

CHU de Montpellier, Laboratoire de Génétique Moléculaire, Montpellier, France; Université de Montpellier, Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier, France.

出版信息

J Cyst Fibros. 2021 May;20(3):464-472. doi: 10.1016/j.jcf.2020.12.003. Epub 2020 Dec 17.

Abstract

BACKGROUND

Minigenes and in silico prediction tools are commonly used to assess the impact on splicing of CFTR variants. Exon skipping is often neglected though it could impact the efficacy of targeted therapies. The aim of the study was to identify exon skipping associated with CFTR variants and to evaluate in silico predictions of seven freely available software.

METHODS

CFTR basal exon skipping was evaluated on endogenous mRNA extracted from non-CF nasal cells and on two CFTR minigene banks. In silico tools and minigene systems were used to evaluate the impact of CFTR exonic variants on exon skipping.

RESULTS

Data showed that out of 65 CFTR variants tested, 26 enhanced exon skipping and that in silico prediction efficacy was of 50%-66%. Some in silico tools presented predictions with a bias towards the occurrence of splicing events while others presented a bias towards the absence of splicing events (non-detection including true negatives and false negatives). Classification of exons depending on their basal exon skipping level increased prediction rates up to 80%.

CONCLUSION

This study indicates that taking basal exon skipping into account could orientate the choice of the in silico tools to improve prediction rates. It also highlights the need to validate effects using in vitro assays or mRNA studies in patients. Eventually, it shows that variant-guided therapy should also target exon skipping associated with variants.

摘要

背景

小基因和计算机预测工具常用于评估 CFTR 变异对剪接的影响。然而,外显子跳跃通常被忽视,尽管它可能会影响靶向治疗的效果。本研究的目的是确定与 CFTR 变异相关的外显子跳跃,并评估七种免费提供的软件的计算机预测。

方法

在内源性 mRNA 中评估非 CF 鼻细胞和两个 CFTR 小基因库中的 CFTR 基础外显子跳跃。使用计算机工具和小基因系统来评估 CFTR 外显子变异对外显子跳跃的影响。

结果

数据显示,在测试的 65 个 CFTR 变异中,有 26 个增强了外显子跳跃,计算机预测的有效性为 50%-66%。一些计算机工具的预测存在偏向于发生剪接事件的偏差,而另一些则存在偏向于不存在剪接事件的偏差(非检测包括真阴性和假阴性)。根据其基础外显子跳跃水平对外显子进行分类可将预测率提高至 80%。

结论

本研究表明,考虑基础外显子跳跃可以指导选择计算机工具以提高预测率。它还强调了使用体外检测或患者 mRNA 研究验证效果的必要性。最终,它表明,基于变异的治疗也应针对与变异相关的外显子跳跃。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验