Mahata Tania, Das Gour Mohan, Dantham Venkata Ramanaiah
Department of Physics, Indian Institute of Technology Patna, Bihar 801103, India.
Department of Physics, Indian Institute of Technology Patna, Bihar 801103, India.
Spectrochim Acta A Mol Biomol Spectrosc. 2021 Mar 15;249:119262. doi: 10.1016/j.saa.2020.119262. Epub 2020 Nov 30.
Au-Ag bimetallic nanostructures with blunt and sharp sprouts are synthesized using a high yield one-step synthesis process. For the first time, these nanostructures are obtained at different growth times in the same synthesis process. The synthesized nanostructures are characterized using a field emission-scanning electron microscope, transmission electron microscope, energy dispersive X-ray analyzer, and UV-Visible spectrometer. The plasmon-active substrates are fabricated using synthesized nanostructures with ease. The Raman probe (IR-780 Iodide) molecules are dispersed on the surface of plasmon-active substrates by drop-casting 10 μl of dye solution of concentration ranging from 1 μM to 1 picomolar (pM) on the substrates. The surface enhanced Raman scattering (SERS) spectra are recorded for each concentration. The nanostructures with blunt sprouts are found useful only up to 100 pM. However, this limitation is brought down to 1 pM using nanostructures with sharp sprouts. The normal Raman scattering spectra of molecules and microcrystals are also recorded and compared with the SERS spectra of molecules. The experimental SERS enhancement factor (EF) is found around 1 × 10 for the Raman probe solution with 1 pM concentration. Finite Element Method (FEM) simulations are performed for estimating the possible single molecule SERS enhancement.
采用高产率一步合成法合成了具有钝尖和尖锐芽体的金-银双金属纳米结构。首次在同一合成过程中的不同生长时间获得了这些纳米结构。使用场发射扫描电子显微镜、透射电子显微镜、能量色散X射线分析仪和紫外-可见光谱仪对合成的纳米结构进行了表征。利用合成的纳米结构轻松制备了等离子体活性基底。通过将10 μl浓度范围从1 μM到1皮摩尔(pM)的染料溶液滴铸在基底上,将拉曼探针(IR-780碘化物)分子分散在等离子体活性基底的表面。记录每种浓度下的表面增强拉曼散射(SERS)光谱。发现具有钝芽体的纳米结构仅在高达100 pM时有用。然而,使用具有尖锐芽体的纳米结构,这个限制降低到了1 pM。还记录了分子和微晶的正常拉曼散射光谱,并与分子的SERS光谱进行了比较。对于浓度为1 pM的拉曼探针溶液,实验测得的SERS增强因子(EF)约为1×10。进行了有限元方法(FEM)模拟,以估计可能的单分子SERS增强。