Um In Hwa, Scott-Hayward Lindesay, Mackenzie Monique, Tan Puay Hoon, Kanesvaran Ravindran, Choudhury Yukti, Caie Peter D, Tan Min-Han, O'Donnell Marie, Leung Steve, Stewart Grant D, Harrison David J
School of Medicine, University of St Andrews, St Andrews, Scotland.
School of Mathematics and Statistics, University of St Andrews, St Andrews, Scotland.
J Pathol Inform. 2020 Nov 6;11:35. doi: 10.4103/jpi.jpi_13_20. eCollection 2020.
Clinicopathological scores are used to predict the likelihood of recurrence-free survival for patients with clear cell renal cell carcinoma (ccRCC) after surgery. These are fallible, particularly in the middle range. This inevitably means that a significant proportion of ccRCC patients who will not develop recurrent disease enroll into clinical trials. As an exemplar of using digital pathology, we sought to improve the predictive power of "recurrence free" designation in localized ccRCC patients, by precise measurement of ccRCC nuclear morphological features using computational image analysis, thereby replacing manual nuclear grade assessment.
TNM 8 UICC pathological stage pT1-pT3 ccRCC cases were recruited in Scotland and in Singapore. A Leibovich score (LS) was calculated. Definiens Tissue studio® (Definiens GmbH, Munich) image analysis platform was used to measure tumor nuclear morphological features in digitized hematoxylin and eosin (H&E) images.
Replacing human-defined nuclear grade with computer-defined mean perimeter generated a modified Leibovich algorithm, improved overall specificity 0.86 from 0.76 in the training cohort. The greatest increase in specificity was seen in LS 5 and 6, which went from 0 to 0.57 and 0.40, respectively. The modified Leibovich algorithm increased the specificity from 0.84 to 0.94 in the validation cohort.
CcRCC nuclear mean perimeter, measured by computational image analysis, together with tumor stage and size, node status and necrosis improved the accuracy of predicting recurrence-free in the localized ccRCC patients. This finding was validated in an ethnically different Singaporean cohort, despite the different H and E staining protocol and scanner used. This may be a useful patient selection tool for recruitment to multicenter studies, preventing some patients from receiving unnecessary additional treatment while reducing the number of patients required to achieve adequate power within neoadjuvant and adjuvant clinical studies.
临床病理评分用于预测透明细胞肾细胞癌(ccRCC)患者术后无复发生存的可能性。这些评分并不准确,尤其是在中等范围内。这不可避免地意味着相当一部分不会发生疾病复发的ccRCC患者会被纳入临床试验。作为使用数字病理学的一个范例,我们试图通过使用计算机图像分析精确测量ccRCC细胞核形态特征,从而取代手动核分级评估,来提高局部ccRCC患者“无复发”判定的预测能力。
在苏格兰和新加坡招募TNM 8 UICC病理分期为pT1 - pT3的ccRCC病例。计算莱博维奇评分(LS)。使用Definiens Tissue studio®(Definiens GmbH,慕尼黑)图像分析平台测量数字化苏木精和伊红(H&E)图像中的肿瘤细胞核形态特征。
用计算机定义的平均周长取代人为定义的核分级,生成了改良的莱博维奇算法,训练队列中的总体特异性从0.76提高到0.86。特异性增加最大的是LS 5和LS 6,分别从0提高到0.57和0.40。改良的莱博维奇算法在验证队列中将特异性从0.84提高到0.94。
通过计算机图像分析测量的ccRCC细胞核平均周长,连同肿瘤分期、大小、淋巴结状态和坏死情况,提高了预测局部ccRCC患者无复发的准确性。尽管使用了不同的H&E染色方案和扫描仪,但这一发现在种族不同的新加坡队列中得到了验证。这可能是一种有用的患者选择工具,用于多中心研究的招募,防止一些患者接受不必要的额外治疗,同时减少在新辅助和辅助临床研究中达到足够效能所需的患者数量。