Department of Psychology, McGill University, 2001 McGill College Avenue, Montreal, QC H3A 1G1, Canada.
Psychometrika. 2020 Dec;85(4):947-972. doi: 10.1007/s11336-020-09733-2. Epub 2020 Dec 21.
Partial least squares path modeling has been widely used for component-based structural equation modeling, where constructs are represented by weighted composites or components of observed variables. This approach remains a limited-information method that carries out two separate stages sequentially to estimate parameters (component weights, loadings, and path coefficients), indicating that it has no single optimization criterion for estimating the parameters at once. In general, limited-information methods are known to provide less efficient parameter estimates than full-information ones. To address this enduring issue, we propose a full-information method for partial least squares path modeling, termed global least squares path modeling, where a single least squares criterion is consistently minimized via a simple iterative algorithm to estimate all the parameters simultaneously. We evaluate the relative performance of the proposed method through the analyses of simulated and real data. We also show that from algorithmic perspectives, the proposed method can be seen as a block-wise special case of another full-information method for component-based structural equation modeling-generalized structured component analysis.
偏最小二乘路径建模已被广泛应用于基于组件的结构方程建模中,其中构念由加权综合或观测变量的组件表示。这种方法仍然是一种有限信息方法,它分两个阶段依次进行参数估计(组件权重、载荷和路径系数),表明它没有单一的优化标准来一次性估计参数。一般来说,有限信息方法被认为提供的参数估计效率不如全信息方法。为了解决这个长期存在的问题,我们提出了一种偏最小二乘路径建模的全信息方法,称为全局最小二乘路径建模,其中通过一个简单的迭代算法一致地最小化单一最小二乘准则,以同时估计所有参数。我们通过对模拟和真实数据的分析来评估所提出方法的相对性能。我们还表明,从算法角度来看,所提出的方法可以被视为基于组件的结构方程建模——广义结构组件分析的另一种全信息方法的一个分块特例。