Suppr超能文献

三维声子晶体中的狄拉克点和向外尔点的转变。

Dirac points and the transition towards Weyl points in three-dimensional sonic crystals.

作者信息

Xie Boyang, Liu Hui, Cheng Hua, Liu Zhengyou, Tian Jianguo, Chen Shuqi

机构信息

The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics, TEDA Institute of Applied Physics, and Renewable Energy Conversion and Storage Center, Nankai University, 300071, Tianjin, China.

The Key Laboratory of Artificial Micro- and Nanostructures of the Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan, China.

出版信息

Light Sci Appl. 2020 Dec 22;9(1):201. doi: 10.1038/s41377-020-00416-2.

Abstract

A four-fold-degenerate three-dimensional (3D) Dirac point, represents a degenerate pair of Weyl points carrying opposite chiralities. Moreover, 3D Dirac crystals have shown many exotic features different from those of Weyl crystals. How these features evolve from 3D Dirac to Weyl crystals is important in research on 3D topological matter. Here, we realized a pair of 3D acoustic Dirac points from band inversion in a hexagonal sonic crystal and observed the surface states and helical interface states connecting the Dirac points. Furthermore, each Dirac point can transition into a pair of Weyl points with the introduction of chiral hopping. The exotic features of the surface states and interface states are inherited by the resulting Weyl crystal. Our work may serve as an ideal platform for exploring exotic physical phenomena in 3D topological semimetals.

摘要

一个四重简并的三维(3D)狄拉克点,代表一对具有相反手性的简并外尔点。此外,三维狄拉克晶体展现出许多与外尔晶体不同的奇异特性。这些特性如何从三维狄拉克晶体演变为外尔晶体,在三维拓扑物质的研究中至关重要。在这里,我们通过六角形声子晶体中的能带反转实现了一对三维声学狄拉克点,并观测到连接狄拉克点的表面态和螺旋界面态。此外,通过引入手性跳跃,每个狄拉克点可以转变为一对外尔点。所得外尔晶体继承了表面态和界面态的奇异特性。我们的工作可能成为探索三维拓扑半金属中奇异物理现象的理想平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91cb/7755923/8599852ce7b7/41377_2020_416_Fig1_HTML.jpg

相似文献

1
Dirac points and the transition towards Weyl points in three-dimensional sonic crystals.
Light Sci Appl. 2020 Dec 22;9(1):201. doi: 10.1038/s41377-020-00416-2.
2
Dirac-Weyl Semimetal: Coexistence of Dirac and Weyl Fermions in Polar Hexagonal ABC Crystals.
Phys Rev Lett. 2018 Sep 7;121(10):106404. doi: 10.1103/PhysRevLett.121.106404.
3
Dirac-Weyl semimetal in photonic metacrystals.
Opt Lett. 2023 May 1;48(9):2349-2352. doi: 10.1364/OL.490001.
4
5
Observation of Three-Dimensional Photonic Dirac Points and Spin-Polarized Surface Arcs.
Phys Rev Lett. 2019 May 24;122(20):203903. doi: 10.1103/PhysRevLett.122.203903.
6
Three Dimensional Photonic Dirac Points in Metamaterials.
Phys Rev Lett. 2017 Nov 24;119(21):213901. doi: 10.1103/PhysRevLett.119.213901. Epub 2017 Nov 20.
7
Nontrivial Berry phase in magnetic BaMnSb semimetal.
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6256-6261. doi: 10.1073/pnas.1706657114. Epub 2017 May 24.
8
Creating stable Floquet-Weyl semimetals by laser-driving of 3D Dirac materials.
Nat Commun. 2017 Jan 17;8:13940. doi: 10.1038/ncomms13940.
9
Scalable Growth of High Mobility Dirac Semimetal Cd3As2 Microbelts.
Nano Lett. 2015 Sep 9;15(9):5830-4. doi: 10.1021/acs.nanolett.5b01885. Epub 2015 Aug 27.
10
A stable three-dimensional topological Dirac semimetal Cd3As2.
Nat Mater. 2014 Jul;13(7):677-81. doi: 10.1038/nmat3990. Epub 2014 May 25.

引用本文的文献

1
Topological phases and non-Hermitian topology in photonic artificial microstructures.
Nanophotonics. 2023 Feb 16;12(13):2273-2294. doi: 10.1515/nanoph-2022-0778. eCollection 2023 Jun.
2
Special Issue on "Topological photonics and beyond: novel concepts and recent advances".
Light Sci Appl. 2020 Dec 22;9(1):203. doi: 10.1038/s41377-020-00437-x.

本文引用的文献

1
Acoustic analogues of three-dimensional topological insulators.
Nat Commun. 2020 May 8;11(1):2318. doi: 10.1038/s41467-020-16131-w.
2
Discovering Topological Surface States of Dirac Points.
Phys Rev Lett. 2020 Mar 13;124(10):104301. doi: 10.1103/PhysRevLett.124.104301.
3
Symmetry-enforced three-dimensional Dirac phononic crystals.
Light Sci Appl. 2020 Mar 10;9:38. doi: 10.1038/s41377-020-0273-4. eCollection 2020.
4
Observation of Three-Dimensional Photonic Dirac Points and Spin-Polarized Surface Arcs.
Phys Rev Lett. 2019 May 24;122(20):203903. doi: 10.1103/PhysRevLett.122.203903.
5
Experimental Demonstration of Acoustic Chern Insulators.
Phys Rev Lett. 2019 Jan 11;122(1):014302. doi: 10.1103/PhysRevLett.122.014302.
6
Nodal rings and drumhead surface states in phononic crystals.
Nat Commun. 2019 Apr 16;10(1):1769. doi: 10.1038/s41467-019-09820-8.
7
Experimental Realization of Type-II Weyl Points and Fermi Arcs in Phononic Crystal.
Phys Rev Lett. 2019 Mar 15;122(10):104302. doi: 10.1103/PhysRevLett.122.104302.
8
Realization of a three-dimensional photonic topological insulator.
Nature. 2019 Jan;565(7741):622-626. doi: 10.1038/s41586-018-0829-0. Epub 2019 Jan 9.
10
Topological negative refraction of surface acoustic waves in a Weyl phononic crystal.
Nature. 2018 Aug;560(7716):61-64. doi: 10.1038/s41586-018-0367-9. Epub 2018 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验