School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
Department of Physiology, Federal University of São Paulo, São Paulo, Brazil.
J Appl Physiol (1985). 2021 Feb 1;130(2):421-434. doi: 10.1152/japplphysiol.00116.2020. Epub 2020 Dec 24.
In 11 healthy adults (25 ± 4 yr; 2 female, 9 male subjects), we investigated the effect of expiratory resistive loaded breathing [65% maximal expiratory mouth pressure (MEP), 15 breaths·min, duty cycle 0.5; ERL] on mean arterial pressure (MAP), leg vascular resistance (LVR), and leg blood flow ([Formula: see text]). On a separate day, a subset of five male subjects performed ERL targeting 65% of maximal expiratory gastric pressure (ERL). ERL-induced expiratory muscle fatigue was confirmed by a 17 ± 5% reduction in MEP ( < 0.05) and a 16 ± 12% reduction in the gastric twitch pressure response to magnetic nerve stimulation ( = 0.09) from before to after ERL and ERL, respectively. From rest to task failure in ERL and ERL, MAP increased (ERL = 31 ± 10 mmHg, ERL = 18 ± 9 mmHg, both < 0.05), but group mean LVR and [Formula: see text] were unchanged (ERL: LVR = 0.78 ± 0.21 vs. 0.97 ± 0.36 mmHg·mL·min, [Formula: see text] = 133 ± 34 vs. 152 ± 74 mL·min; ERL: LVR = 0.70 ± 0.21 vs. 0.84 ± 0.33 mmHg·mL·min, [Formula: see text] = 160 ± 48 vs. 179 ± 110 mL·min) (all ≥ 0.05). Interestingly, [Formula: see text] during ERL oscillated within each breath, increasing (∼66%) and decreasing (∼50%) relative to resting values during resisted expirations and unresisted inspirations, respectively. In conclusion, fatiguing expiratory muscle work did not affect group mean LVR or [Formula: see text] in otherwise resting humans. We speculate that any sympathetically mediated peripheral vasoconstriction was counteracted by transient mechanical effects of high intra-abdominal pressures during ERL. Fatiguing expiratory muscle work in otherwise resting humans elicits an increase in sympathetic motor outflow; whether limb blood flow ([Formula: see text]) and leg vascular resistance (LVR) are affected remains unknown. We found that fatiguing expiratory resistive loaded breathing (ERL) did not affect group mean [Formula: see text] or LVR. However, within-breath oscillations in [Formula: see text] may reflect a sympathetically mediated vasoconstriction that was counteracted by transient increases in [Formula: see text] due to the mechanical effects of high intra-abdominal pressure during ERL.
在 11 名健康成年人(25±4 岁;2 名女性,9 名男性受试者)中,我们研究了呼气阻力负荷呼吸(65%最大呼气口压(MEP),15 次呼吸·分钟,占空比 0.5;ERL)对平均动脉压(MAP)、下肢血管阻力(LVR)和下肢血流量([公式:见文本])的影响。在另一天,五名男性受试者中的一部分进行了以 65%最大呼气胃压(ERL)为目标的 ERL。通过 MEP 降低 17±5%(<0.05)和磁神经刺激引起的胃 twitch 压力反应降低 16±12%(=0.09),从 ERL 前到 ERL 后分别确认 ERL 诱导的呼气肌疲劳。从休息到 ERL 和 ERL 中的任务失败,MAP 增加(ERL=31±10mmHg,ERL=18±9mmHg,均<0.05),但组平均 LVR 和[公式:见文本]不变(ERL:LVR=0.78±0.21 对 0.97±0.36mmHg·mL·min,[公式:见文本] =133±34 对 152±74mL·min;ERL:LVR=0.70±0.21 对 0.84±0.33mmHg·mL·min,[公式:见文本] =160±48 对 179±110mL·min)(均≥0.05)。有趣的是,[公式:见文本]在 ERL 期间在每次呼吸内波动,在抵抗呼气期间相对于休息值增加(约 66%),在不受抵抗的吸气期间相对于休息值降低(约 50%)。总之,在其他情况下休息的人中,疲劳的呼气肌工作不会影响组平均 LVR 或[公式:见文本]。我们推测,在 ERL 期间,高腹腔内压力的瞬态机械效应抵消了交感神经介导的外周血管收缩。在其他情况下休息的人中疲劳的呼气肌工作会引起交感运动输出的增加;肢体血流量([公式:见文本])和下肢血管阻力(LVR)是否受到影响尚不清楚。我们发现,疲劳的呼气阻力负荷呼吸(ERL)并不影响组平均[公式:见文本]或 LVR。然而,[公式:见文本]的呼吸内波动可能反映了交感神经介导的血管收缩,这种收缩被 ERL 期间由于高腹腔内压力的机械效应而导致的[公式:见文本]的短暂增加所抵消。