Suppr超能文献

体力活动不足诱导的肌肉胰岛素抵抗的临床前啮齿动物模型:挑战与解决方案。

Preclinical rodent models of physical inactivity-induced muscle insulin resistance: challenges and solutions.

机构信息

Department of Kinesiology and Health, Miami University, Oxford, Ohio.

Departments of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.

出版信息

J Appl Physiol (1985). 2021 Mar 1;130(3):537-544. doi: 10.1152/japplphysiol.00954.2020. Epub 2020 Dec 24.

Abstract

Physical inactivity influences the development of muscle insulin resistance yet is far less understood than diet-induced muscle insulin resistance. Progress in understanding the mechanisms of physical inactivity-induced insulin resistance is limited by a lack of an appropriate preclinical model of muscle insulin resistance. Here, we discuss differences between diet and physical inactivity-induced insulin resistance, the advantages and disadvantages of the available rodent inactivity models to study insulin resistance, and our current understanding of the mechanisms of muscle insulin resistance derived from such preclinical inactivity designs. The burgeoning rise of health complications emanating from metabolic disease presents an alarming issue with mounting costs for health care and a reduced quality of life. There exists a pressing need for more complete understanding of mechanisms behind the development and progression of metabolic dysfunction. Since lifestyle modifications such as poor diet and lack of physical activity are primary catalysts of metabolic dysfunction, rodent models have been formed to explore mechanisms behind these issues. Particularly, the use of a high-fat diet has been pervasive and has been an instrumental model to gain insight into mechanisms underlying diet-induced insulin resistance (IR). However, physical inactivity (and to some extent muscle disuse) is an often overlooked and much less frequently studied lifestyle modification, which some have contended is the primary contributor in the initial development of muscle IR. In this mini-review we highlight some of the key differences between diet- and physical inactivity-induced development of muscle IR and propose reasons for the sparse volume of academic research into physical inactivity-induced IR including infrequent use of clearly translatable rodent physical inactivity models.

摘要

身体活动不足会影响肌肉胰岛素抵抗的发展,但人们对其的了解远不及饮食引起的肌肉胰岛素抵抗。由于缺乏适当的肌肉胰岛素抵抗临床前模型,人们对身体活动引起的胰岛素抵抗机制的理解进展有限。在这里,我们讨论了饮食和身体活动引起的胰岛素抵抗之间的差异,讨论了现有用于研究胰岛素抵抗的啮齿动物不活动模型的优缺点,以及我们目前对这些临床前不活动设计中肌肉胰岛素抵抗机制的理解。代谢疾病引起的健康并发症不断增加,给医疗保健带来了惊人的成本上升和生活质量下降的问题。人们迫切需要更全面地了解代谢功能障碍发展和进展的机制。由于生活方式的改变,如不良饮食和缺乏身体活动,是代谢功能障碍的主要诱因,因此已经建立了啮齿动物模型来探索这些问题背后的机制。特别是,高脂肪饮食的使用已经很普遍,并且是深入了解饮食引起的胰岛素抵抗(IR)机制的重要模型。然而,身体活动不足(在某种程度上还有肌肉失用)是一种经常被忽视且研究得较少的生活方式改变,一些人认为它是肌肉 IR 最初发展的主要原因。在这个小型综述中,我们强调了饮食和身体活动引起的肌肉 IR 发展之间的一些关键差异,并提出了身体活动引起的 IR 研究相对较少的原因,包括不常使用可明显转化的啮齿动物身体活动不足模型。

相似文献

1
Preclinical rodent models of physical inactivity-induced muscle insulin resistance: challenges and solutions.
J Appl Physiol (1985). 2021 Mar 1;130(3):537-544. doi: 10.1152/japplphysiol.00954.2020. Epub 2020 Dec 24.
2
Skeletal muscle ceramides do not contribute to physical-inactivity-induced insulin resistance.
Appl Physiol Nutr Metab. 2019 Nov;44(11):1180-1188. doi: 10.1139/apnm-2018-0850. Epub 2019 Mar 19.
3
Cardiovasomobility: an integrative understanding of how disuse impacts cardiovascular and skeletal muscle health.
J Appl Physiol (1985). 2022 Mar 1;132(3):835-861. doi: 10.1152/japplphysiol.00607.2021. Epub 2022 Feb 3.
4
Short-term physical inactivity induces diacylglycerol accumulation and insulin resistance in muscle via lipin1 activation.
Am J Physiol Endocrinol Metab. 2021 Dec 1;321(6):E766-E781. doi: 10.1152/ajpendo.00254.2020. Epub 2021 Nov 1.
5
Disuse-induced insulin resistance susceptibility coincides with a dysregulated skeletal muscle metabolic transcriptome.
J Appl Physiol (1985). 2019 May 1;126(5):1419-1429. doi: 10.1152/japplphysiol.01093.2018. Epub 2019 Feb 14.
6
Physical inactivity, insulin resistance, and the oxidative-inflammatory loop.
Free Radic Res. 2014 Jan;48(1):93-108. doi: 10.3109/10715762.2013.847528. Epub 2013 Oct 17.
7
From physical inactivity to immobilization: Dissecting the role of oxidative stress in skeletal muscle insulin resistance and atrophy.
Free Radic Biol Med. 2016 Sep;98:197-207. doi: 10.1016/j.freeradbiomed.2015.12.028. Epub 2015 Dec 29.
9
Reduced physical activity in young and older adults: metabolic and musculoskeletal implications.
Ther Adv Endocrinol Metab. 2019 Nov 19;10:2042018819888824. doi: 10.1177/2042018819888824. eCollection 2019.

引用本文的文献

3
Sedentary lifestyle induces oxidative stress and atrophy in rat skeletal muscle.
Exp Physiol. 2025 Jun;110(6):857-865. doi: 10.1113/EP092331. Epub 2025 Jan 29.
4
Sex-specific cardiovascular adaptations to simulated microgravity in Sprague-Dawley rats.
NPJ Microgravity. 2024 Dec 19;10(1):110. doi: 10.1038/s41526-024-00450-z.
5
Prazosin improves insulin-induced anabolic signaling by protecting capillary regression in the soleus muscle of hindlimb-unloaded rats.
J Diabetes Metab Disord. 2024 Jun 26;23(2):1989-1999. doi: 10.1007/s40200-024-01454-y. eCollection 2024 Dec.
9
Construction of the experimental rat model of gestational diabetes.
PLoS One. 2022 Sep 15;17(9):e0273703. doi: 10.1371/journal.pone.0273703. eCollection 2022.
10
Physical Inactivity - the Human Health's Greatest Enemy.
Zdr Varst. 2021 Dec 27;61(1):1-5. doi: 10.2478/sjph-2022-0002. eCollection 2022 Mar.

本文引用的文献

1
Absence of MyD88 from Skeletal Muscle Protects Female Mice from Inactivity-Induced Adiposity and Insulin Resistance.
Obesity (Silver Spring). 2020 Apr;28(4):772-782. doi: 10.1002/oby.22759. Epub 2020 Feb 28.
2
Pharmacological inhibition of TLR4 ameliorates muscle and liver ceramide content after disuse in previously physically active mice.
Am J Physiol Regul Integr Comp Physiol. 2020 Mar 1;318(3):R503-R511. doi: 10.1152/ajpregu.00330.2019. Epub 2020 Jan 29.
5
Role of Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms.
Physiol Rev. 2017 Oct 1;97(4):1351-1402. doi: 10.1152/physrev.00019.2016.
6
Mechanisms Associated With Physical Activity Behavior: Insights From Rodent Experiments.
Exerc Sport Sci Rev. 2017 Oct;45(4):217-222. doi: 10.1249/JES.0000000000000124.
7
A Rat Immobilization Model Based on Cage Volume Reduction: A Physiological Model for Bed Rest?
Front Physiol. 2017 Mar 29;8:184. doi: 10.3389/fphys.2017.00184. eCollection 2017.
9
Intramyocellular ceramides and skeletal muscle mitochondrial respiration are partially regulated by Toll-like receptor 4 during hindlimb unloading.
Am J Physiol Regul Integr Comp Physiol. 2016 Nov 1;311(5):R879-R887. doi: 10.1152/ajpregu.00253.2016. Epub 2016 Aug 31.
10
Biochemical Adaptations in a Slow and a Fast Plantarflexor Muscle of Rats Housed in Small Cages.
Aerosp Med Hum Perform. 2016 May;87(5):443-8. doi: 10.3357/AMHP.4436.2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验