Departamento de Biología Celular, Universidad Simón Bolívar, Apartado 89.000, Valle de Sartenejas, Baruta, Caracas, 1081-A, Venezuela.
Departamento de Química Física Biológica, Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006, Madrid, Spain.
Arch Biochem Biophys. 2021 Feb 15;698:108731. doi: 10.1016/j.abb.2020.108731. Epub 2020 Dec 24.
Microbial pathogens, such as Trypanosoma brucei, have an enormous impact on global health and economic systems. Protein kinase A of T. brucei is an attractive drug target as it is an essential enzyme which differs significantly from its human homolog. The hinge region of this protein's regulatory domain is vital for enzymatic function, but its conformation is unknown. Here, the secondary structure of this region has been characterized using NMR and CD spectroscopies. More specifically, three overlapping peptides corresponding to residues T187-I211, G198-Y223 and V220-S245 called peptide 1, peptide 2 and peptide 3, respectively, were studied. The peptide 1 and peptide 2 are chiefly unfolded; only low populations (<10%) of α-helix were detected under the conditions studied. In contrast, the peptide 3 contains a long α-helix whose population is significantly higher; namely, 36% under the conditions studied. Utilizing the dihedral φ and ψ angles calculated on the basis of the NMR data, the conformation of the peptide 3 was calculated and revealed an α-helix spanning residues E230-N241. This α-helix showed amphiphilicity and reversible unfolding and refolding upon heating and cooling. Most fascinating, however, is its capacity to inhibit the activity of the catalytic domain of Trypanosoma equiperdum protein kinase A even though it is quite distinct from the canonical inhibitor motif. Based on this property, we advance that peptoids based on the peptide 3 α-helix could be novel leads for developing anti-trypanosomal therapeutics.
微生物病原体,如布氏锥虫,对全球健康和经济系统有巨大影响。布氏锥虫蛋白激酶 A 是一个有吸引力的药物靶点,因为它是一种必需的酶,与人类同源物有很大的不同。该蛋白质调节域的铰链区对于酶的功能至关重要,但它的构象尚不清楚。在这里,使用 NMR 和 CD 光谱学对该区域的二级结构进行了表征。更具体地说,研究了三个重叠的肽,分别对应于残基 T187-I211、G198-Y223 和 V220-S245,称为肽 1、肽 2 和肽 3。肽 1 和肽 2 主要是无规卷曲的;在所研究的条件下,仅检测到低于 10%的α-螺旋。相比之下,肽 3 包含一个长的α-螺旋,其种群明显更高;即在研究条件下为 36%。利用基于 NMR 数据计算的二面角φ和ψ角,计算了肽 3 的构象,并揭示了一个跨越残基 E230-N241 的α-螺旋。该α-螺旋具有两亲性和可逆的展开和折叠,加热和冷却时都会发生。然而,最令人着迷的是,它能够抑制伊氏锥虫蛋白激酶 A 的催化结构域的活性,尽管它与典型的抑制剂基序有很大的不同。基于这一特性,我们提出基于肽 3 α-螺旋的肽类似物可能是开发抗锥虫治疗药物的新先导物。