Suppr超能文献

不同波长和脉冲形状的红外神经刺激。

Infrared neural stimulation at different wavelengths and pulse shapes.

机构信息

Department of Otolaryngology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Searle 12-561, Chicago, IL, 60611, USA; Department of Communication Sciences and Disorders, Northwestern University, Frances Searle Building, 2240 Campus Drive, Evanston, IL, 60208, USA.

Department of Otolaryngology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Searle 12-561, Chicago, IL, 60611, USA.

出版信息

Prog Biophys Mol Biol. 2021 Jul;162:89-100. doi: 10.1016/j.pbiomolbio.2020.12.004. Epub 2020 Dec 24.

Abstract

Neural stimulation with infrared radiation has been explored for brain tissue, peripheral nerves, and cranial nerves including the auditory nerve. Initial experiments were conducted at wavelengths between λ = 1850 and λ = 2140 nm and the radiant energy was delivered with square pulses. Water absorption of the infrared radiation at λ = 1860 nm is similar to absorption at wavelengths between λ = 1310 and λ = 1600 nm, which are in the radiation wavelength range used for the communication industry. Technology for those wavelengths has already been developed and miniaturized and is readily available. The possibility of the infrared light to evoke compound action potentials (CAP) in the cochlea at λ = 1,375, λ = 1,460, and λ = 1550 nm was explored and compared to that of λ = 1860 nm in guinea pigs. Furthermore, rise and fall times of the 100 μs long pulses were changed and four basic pulse shapes (square, triangular, ramp-up, and ramp-down) were explored in their ability to evoke a CAP. In animals with pure tone threshold averages (PTAs) above 70 dB SPL, the results show that the favorable wavelength is λ = 1460 nm to reach threshold for stimulation and λ = 1375 nm or λ = 1460 nm for obtaining maximum amplitude. The most favorable pulse shape is either ramp-up or triangular.

摘要

红外辐射神经刺激已被应用于脑组织、周围神经和颅神经(包括听神经)的研究。最初的实验在波长为λ=1850nm 和 λ=2140nm 之间进行,辐射能以方波脉冲形式传递。红外辐射在 λ=1860nm 的水吸收率与 λ=1310nm 和 λ=1600nm 之间的吸收率相似,这两个波长都在用于通信行业的辐射波长范围内。这些波长的技术已经得到开发和小型化,并且已经可以得到。在 λ=1375nm、λ=1460nm 和 λ=1550nm 时,红外光在耳蜗中诱发复合动作电位(CAP)的可能性被探索并与 λ=1860nm 进行了比较。此外,改变了 100μs 长脉冲的上升和下降时间,并探索了四种基本脉冲形状(方形、三角形、上升和下降)在诱发 CAP 方面的能力。在纯音阈值平均值(PTA)高于 70dB SPL 的动物中,结果表明,有利的波长是 λ=1460nm 以达到刺激阈值,λ=1375nm 或 λ=1460nm 以获得最大振幅。最有利的脉冲形状是上升或三角形。

相似文献

1
Infrared neural stimulation at different wavelengths and pulse shapes.
Prog Biophys Mol Biol. 2021 Jul;162:89-100. doi: 10.1016/j.pbiomolbio.2020.12.004. Epub 2020 Dec 24.
2
Short-wavelength infrared laser activates the auditory neurons: comparing the effect of 980 vs. 810 nm wavelength.
Lasers Med Sci. 2017 Feb;32(2):357-362. doi: 10.1007/s10103-016-2123-4. Epub 2016 Dec 16.
4
Effect of shorter pulse duration in cochlear neural activation with an 810-nm near-infrared laser.
Lasers Med Sci. 2017 Feb;32(2):389-396. doi: 10.1007/s10103-016-2129-y. Epub 2016 Dec 20.
5
Pulsed 808-nm infrared laser stimulation of the auditory nerve in guinea pig cochlea.
Lasers Med Sci. 2014 Jan;29(1):343-9. doi: 10.1007/s10103-013-1348-8. Epub 2013 May 28.
6
Auditory nerve impulses induced by 980 nm laser.
J Biomed Opt. 2015 Aug;20(8):88004. doi: 10.1117/1.JBO.20.8.088004.
7
Acute damage threshold for infrared neural stimulation of the cochlea: functional and histological evaluation.
Anat Rec (Hoboken). 2012 Nov;295(11):1987-99. doi: 10.1002/ar.22583. Epub 2012 Oct 8.
8
Effect of Fiberoptic Collimation Technique on 808 nm Wavelength Laser Stimulation of Cochlear Neurons.
Photomed Laser Surg. 2016 Jun;34(6):252-7. doi: 10.1089/pho.2015.4065. Epub 2016 Mar 15.
9
Channel Interaction During Infrared Light Stimulation in the Cochlea.
Lasers Surg Med. 2021 Sep;53(7):986-997. doi: 10.1002/lsm.23360. Epub 2021 Jan 21.
10
Short-wavelength near infrared stimulation of the inner ear hair cells.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2633-6. doi: 10.1109/EMBC.2014.6944163.

引用本文的文献

1
Decreasing the physical gap in the neural-electrode interface and related concepts to improve cochlear implant performance.
Front Neurosci. 2024 Jul 24;18:1425226. doi: 10.3389/fnins.2024.1425226. eCollection 2024.
2
3
Emerging trends in the development of flexible optrode arrays for electrophysiology.
APL Bioeng. 2023 Sep 7;7(3):031503. doi: 10.1063/5.0153753. eCollection 2023 Sep.
4
A Micron-Sized Laser Photothermal Effect Evaluation System and Method.
Sensors (Basel). 2021 Jul 29;21(15):5133. doi: 10.3390/s21155133.

本文引用的文献

1
Intracochlear near infrared stimulation: Feasibility of optoacoustic stimulation in vivo.
Hear Res. 2019 Jan;371:40-52. doi: 10.1016/j.heares.2018.11.003. Epub 2018 Nov 12.
2
Pulsed infrared releases Ca from the endoplasmic reticulum of cultured spiral ganglion neurons.
J Neurophysiol. 2018 Aug 1;120(2):509-524. doi: 10.1152/jn.00740.2017. Epub 2018 Apr 18.
3
Pressure in the Cochlea During Infrared Irradiation.
IEEE Trans Biomed Eng. 2018 Jul;65(7):1575-1584. doi: 10.1109/TBME.2016.2636149. Epub 2016 Dec 7.
4
Optoacoustic effect is responsible for laser-induced cochlear responses.
Sci Rep. 2016 Jun 15;6:28141. doi: 10.1038/srep28141.
5
Radiant energy required for infrared neural stimulation.
Sci Rep. 2015 Aug 25;5:13273. doi: 10.1038/srep13273.
6
Target structures for cochlear infrared neural stimulation.
Neurophotonics. 2015 Apr;2(2):025002. doi: 10.1117/1.NPh.2.2.025002. Epub 2015 May 18.
7
Infrared neural stimulation fails to evoke neural activity in the deaf guinea pig cochlea.
Hear Res. 2015 Jun;324:46-53. doi: 10.1016/j.heares.2015.03.005. Epub 2015 Mar 19.
8
Plasma membrane nanoporation as a possible mechanism behind infrared excitation of cells.
J Neural Eng. 2014 Dec;11(6):066006. doi: 10.1088/1741-2560/11/6/066006. Epub 2014 Oct 23.
9
10
Exciting cell membranes with a blustering heat shock.
Biophys J. 2014 Apr 15;106(8):1570-7. doi: 10.1016/j.bpj.2014.03.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验