Apostolaki Maria-Athina, Toumazatou Alexia, Antoniadou Maria, Sakellis Elias, Xenogiannopoulou Evangelia, Gardelis Spiros, Boukos Nikos, Falaras Polycarpos, Dimoulas Athanasios, Likodimos Vlassis
Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, GR-15784 Athens, Greece.
Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Agia Paraskevi, 15341 Athens, Greece.
Nanomaterials (Basel). 2020 Dec 21;10(12):2566. doi: 10.3390/nano10122566.
Photonic crystal structuring has emerged as an advanced method to enhance solar light harvesting by metal oxide photocatalysts along with rational compositional modifications of the materials' properties. In this work, surface functionalization of TiO photonic crystals by blue luminescent graphene quantum dots (GQDs), n-π* band at ca. 350 nm, is demonstrated as a facile, environmental benign method to promote photocatalytic activity by the combination of slow photon-assisted light trapping with GQD-TiO interfacial electron transfer. TiO inverse opal films fabricated by the co-assembly of polymer colloidal spheres with a hydrolyzed titania precursor were post-modified by impregnation in aqueous GQDs suspension without any structural distortion. Photonic band gap engineering by varying the inverse opal macropore size resulted in selective performance enhancement for both salicylic acid photocatalytic degradation and photocurrent generation under UV-VIS and visible light, when red-edge slow photons overlapped with the composite's absorption edge, whereas stop band reflection was attenuated by the strong UVA absorbance of the GQD-TiO photonic films. Photoelectrochemical and photoluminescence measurements indicated that the observed improvement, which surpassed similarly modified benchmark mesoporous P25 TiO films, was further assisted by GQDs electron acceptor action and visible light activation to a lesser extent, leading to highly efficient photocatalytic films.
光子晶体结构已成为一种先进的方法,可通过金属氧化物光催化剂增强太阳光捕获,同时对材料性能进行合理的成分改性。在这项工作中,通过蓝色发光石墨烯量子点(GQDs)对TiO光子晶体进行表面功能化,其n-π*带约在350nm处,被证明是一种简便、环境友好的方法,通过慢光子辅助光捕获与GQD-TiO界面电子转移相结合来促进光催化活性。通过聚合物胶体球与水解二氧化钛前驱体的共组装制备的TiO反蛋白石薄膜,通过浸渍在水性GQDs悬浮液中进行后修饰,而没有任何结构变形。通过改变反蛋白石大孔尺寸进行光子带隙工程,当红色边缘慢光子与复合材料的吸收边缘重叠时,在紫外-可见和可见光下,对水杨酸光催化降解和光电流产生都有选择性的性能增强,而GQD-TiO光子薄膜的强UVA吸收减弱了禁带反射。光电化学和光致发光测量表明,观察到的改进超过了类似改性的基准介孔P25 TiO薄膜,GQDs的电子受体作用和较小程度的可见光活化进一步促进了这种改进,从而得到了高效的光催化薄膜。