Earth and Sustainability Science Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, Australia.
Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.
J Anat. 2021 Jun;238(6):1312-1329. doi: 10.1111/joa.13380. Epub 2020 Dec 29.
Bats show a remarkable ecological diversity that is reflected both in dietary and foraging guilds (FGs). Cranial ecomorphological adaptations linked to diet have been widely studied in bats, using a variety of anatomical, computational and mathematical approaches. However, foraging-related ecomorphological adaptations and the concordance between cranial and postcranial morphological adaptations remain unexamined in bats and limited to the interpretation of traditional aerodynamic properties of the wing (e.g. wing loading [WL] and aspect ratio [AR]). For this reason, the postcranial ecomorphological diversity in bats and its drivers remain understudied. Using 3D virtual modelling and geometric morphometrics (GMM), we explored the phylogenetic, ecological and biological drivers of humeral morphology in bats, evaluating the presence and magnitude of modularity and integration. To explore decoupled patterns of variation across the bone, we analysed whole-bone shape, diaphyseal and epiphyseal shape. We also tested whether traditional aerodynamic wing traits correlate with humeral shape. By studying 37 species from 20 families (covering all FGs and 85% of dietary guilds), we found similar patterns of variation in whole-bone and diaphyseal shape and unique variation patterns in epiphyseal shape. Phylogeny, diet and FG significantly correlated with shape variation at all levels, whereas size only had a significant effect on epiphyseal morphology. We found a significant phylogenetic signal in all levels of humeral shape. Epiphyseal shape significantly correlated with wing AR. Statistical support for a diaphyseal-epiphyseal modular partition of the humerus suggests a functional partition of shape variability. Our study is the first to show within-structure modular morphological variation in the appendicular skeleton of any living tetrapod. Our results suggest that diaphyseal shape correlates more with phylogeny, whereas epiphyseal shape correlates with diet and FG.
蝙蝠表现出显著的生态多样性,这反映在它们的饮食和觅食群体(FG)中。人们广泛研究了与饮食相关的颅生态形态适应,使用了各种解剖学、计算和数学方法。然而,与觅食相关的生态形态适应以及颅骨和后肢形态适应之间的一致性在蝙蝠中尚未得到研究,仅限于对翅膀传统空气动力学特性(例如翼载[WL]和展弦比[AR])的解释。出于这个原因,蝙蝠的后肢生态形态多样性及其驱动因素仍未得到充分研究。我们使用 3D 虚拟建模和几何形态测量学(GMM),探索了蝙蝠肱骨形态的系统发育、生态和生物学驱动因素,评估了模块性和整合性的存在和程度。为了探索骨骼上的离散变异模式,我们分析了整个骨骼的形状、骨干和骨骺的形状。我们还测试了传统空气动力学翅膀特征是否与肱骨形状相关。通过研究来自 20 个科的 37 种物种(涵盖所有 FG 和 85%的饮食群体),我们发现整个骨骼和骨干形状的变异模式相似,骨骺形状的变异模式独特。系统发育、饮食和 FG 在所有水平上都与形状变化显著相关,而大小仅对骨骺形态有显著影响。我们发现肱骨形状在所有水平上都有显著的系统发育信号。骨骺形状与翅膀 AR 显著相关。肱骨骨干-骨骺模块分区的统计支持表明形状可变性的功能分区。我们的研究是第一个显示任何现存四足动物附肢骨骼内结构形态变异的研究。我们的结果表明,骨干形状与系统发育的相关性更高,而骨骺形状与饮食和 FG 相关。