McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA; Department of Bioengineering, University of Pittsburgh, USA.
Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
Brain Res Bull. 2021 Mar;168:120-137. doi: 10.1016/j.brainresbull.2020.12.004. Epub 2020 Dec 26.
Intracerebral implantation of neural stem cells (NSCs) to treat stroke remains an inefficient process with <5% of injected cells being retained. To improve the retention and distribution of NSCs after a stroke, we investigated the utility of NSCs' encapsulation in polyethylene glycol (PEG) microspheres. We first characterized the impact of the physical properties of different syringes and needles, as well as ejection speed, upon delivery of microspheres to the stroke injured rat brain. A 20 G needle size at a 10 μL/min flow rate achieved the most efficient microsphere ejection. Secondly, we optimized the delivery vehicles for in vivo implantation of PEG microspheres. The suspension of microspheres in extracellular matrix (ECM) hydrogel showed superior retention and distribution in a cortical stroke caused by photothrombosis, as well as in a striatal and cortical cavity ensuing middle cerebral artery occlusion (MCAo). Thirdly, NSCs or NSCs + endothelial cells (ECs) encapsulated into biodegradable microspheres were implanted into a large stroke cavity. Cells in microspheres exhibited a high viability, survived freezing and transport. Implantation of 110 cells/microsphere suspended in ECM hydrogel produced a highly efficient delivery that resulted in the widespread distribution of NSCs in the tissue cavity and damaged peri-infarct tissues. Co-delivery of ECs enhanced the in vivo survival and distribution of ∼1.1 million NSCs. The delivery of NSCs and ECs can be dramatically improved using microsphere encapsulation combined with suspension in ECM hydrogel. These biomaterial innovations are essential to advance clinical efforts to improve the treatment of stroke using intracerebral cell therapy.
脑内植入神经干细胞(NSCs)治疗中风的效率仍然很低,只有 <5%的注射细胞被保留。为了提高中风后 NSCs 的保留和分布,我们研究了将 NSCs 包封在聚乙二醇(PEG)微球中的效用。我们首先描述了不同注射器和针头的物理特性以及喷射速度对微球递送至中风损伤大鼠脑的影响。20G 大小的针头以 10μL/min 的流速可实现最有效的微球喷射。其次,我们优化了用于 PEG 微球体内植入的输送载体。微球在细胞外基质(ECM)水凝胶中的悬浮液在光血栓引起的皮质中风以及随之而来的纹状体和皮质腔中的大脑中动脉闭塞(MCAo)中显示出更好的保留和分布。第三,将 NSCs 或包封在可生物降解微球中的 NSCs+内皮细胞(ECs)植入大的中风腔中。微球中的细胞具有高活力,可在冷冻和运输中存活。将 110 个细胞/微球悬浮在 ECM 水凝胶中的植入物产生了高效的传递,导致 NSCs 在组织腔和损伤的梗死周围组织中广泛分布。ECs 的共递送增强了约 110 万个 NSCs 的体内存活和分布。使用微球包封结合 ECM 水凝胶悬浮可显著改善 NSCs 和 ECs 的传递。这些生物材料创新对于推进使用脑内细胞疗法改善中风治疗的临床努力至关重要。