Suppr超能文献

大规模并行量子化学密度矩阵重整化群方法

Massively parallel quantum chemical density matrix renormalization group method.

作者信息

Brabec Jiri, Brandejs Jan, Kowalski Karol, Xantheas Sotiris, Legeza Örs, Veis Libor

机构信息

J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.

Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.

出版信息

J Comput Chem. 2021 Mar 30;42(8):534-544. doi: 10.1002/jcc.26476. Epub 2020 Dec 30.

Abstract

We present, to the best of our knowledge, the first attempt to exploit the super-computer platform for quantum chemical density matrix renormalization group (QC-DMRG) calculations. We have developed the parallel scheme based on the in-house MPI global memory library, which combines operator and symmetry sector parallelisms, and tested its performance on three different molecules, all typical candidates for QC-DMRG calculations. In case of the largest calculation, which is the nitrogenase FeMo cofactor cluster with the active space comprising 113 electrons in 76 orbitals and bond dimension equal to 6000, our parallel approach scales up to approximately 2000 CPU cores.

摘要

据我们所知,我们首次尝试利用超级计算机平台进行量子化学密度矩阵重整化群(QC-DMRG)计算。我们基于内部MPI全局内存库开发了并行方案,该方案结合了算符和对称扇区并行性,并在三个不同分子上测试了其性能,这些分子都是QC-DMRG计算的典型候选对象。在最大规模的计算中,即固氮酶FeMo辅因子簇,其活性空间包含76个轨道中的113个电子,键维度等于6000,我们的并行方法可扩展到约2000个CPU核心。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验