Degond Pierre, Herda Maxime, Mirrahimi Sepideh
Department of Mathematics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
Inria, University Lille, CNRS, UMR 8524 Laboratoire Paul Painlev, F-59000 Lille, France.
Math Biosci Eng. 2020 Sep 24;17(6):6459-6486. doi: 10.3934/mbe.2020338.
We study several Fokker-Planck equations arising from a stochastic chemical kinetic system modeling a gene regulatory network in biology. The densities solving the Fokker-Planck equations describe the joint distribution of the mRNA and RNA content in a cell. We provide theoretical and numerical evidence that the robustness of the gene expression is increased in the presence of RNA. At the mathematical level, increased robustness shows in a smaller coefficient of variation of the marginal density of the mRNA in the presence of RNA. These results follow from explicit formulas for solutions. Moreover, thanks to dimensional analyses and numerical simulations we provide qualitative insight into the role of each parameter in the model. As the increase of gene expression level comes from the underlying stochasticity in the models, we eventually discuss the choice of noise in our models and its influence on our results.
我们研究了几个源于一个随机化学动力学系统的福克-普朗克方程,该系统对生物学中的一个基因调控网络进行建模。求解福克-普朗克方程的密度描述了细胞中mRNA和RNA含量的联合分布。我们提供了理论和数值证据,表明在存在RNA的情况下基因表达的稳健性会增强。在数学层面上,稳健性增强表现为在存在RNA时mRNA边际密度的变异系数更小。这些结果来自于解的显式公式。此外,通过量纲分析和数值模拟,我们对模型中每个参数的作用提供了定性的见解。由于基因表达水平的增加源于模型中潜在的随机性,我们最终讨论了模型中噪声的选择及其对我们结果的影响。