Suppr超能文献

激光强度的非线性时空控制

Nonlinear spatiotemporal control of laser intensity.

作者信息

Simpson Tanner T, Ramsey Dillon, Franke Philip, Vafaei-Najafabadi Navid, Turnbull David, Froula Dustin H, Palastro John P

出版信息

Opt Express. 2020 Dec 21;28(26):38516-38526. doi: 10.1364/OE.411011.

Abstract

Spatiotemporal control over the intensity of a laser pulse has the potential to enable or revolutionize a wide range of laser-based applications that currently suffer from the poor flexibility offered by conventional optics. Specifically, these optics limit the region of high intensity to the Rayleigh range and provide little to no control over the trajectory of the peak intensity. Here, we introduce a nonlinear technique for spatiotemporal control, the "self-flying focus," that produces an arbitrary trajectory intensity peak that can be sustained for distances comparable to the focal length. The technique combines temporal pulse shaping and the inherent nonlinearity of a medium to customize the time and location at which each temporal slice within the pulse comes to its focus. As an example of its utility, simulations show that the self-flying focus can form a highly uniform, meter-scale plasma suitable for advanced plasma-based accelerators.

摘要

对激光脉冲强度进行时空控制,有可能使目前受传统光学灵活性差所限的各种基于激光的应用成为可能或发生变革。具体而言,这些光学器件将高强度区域限制在瑞利范围内,并且对峰值强度的轨迹几乎没有控制能力。在此,我们介绍一种用于时空控制的非线性技术,即“自飞行焦点”,它能产生一个可维持与焦距相当距离的任意轨迹强度峰值。该技术将时间脉冲整形与介质固有的非线性相结合,以定制脉冲内每个时间切片聚焦的时间和位置。作为其效用的一个例子,模拟表明自飞行焦点可以形成一个高度均匀的、米级的等离子体,适用于先进的基于等离子体的加速器。

相似文献

1
Nonlinear spatiotemporal control of laser intensity.
Opt Express. 2020 Dec 21;28(26):38516-38526. doi: 10.1364/OE.411011.
2
Spatiotemporal control of laser intensity through cross-phase modulation.
Opt Express. 2022 Mar 14;30(6):9878-9891. doi: 10.1364/OE.451123.
3
Ultrabroadband flying-focus using an axiparabola-echelon pair.
Opt Express. 2024 Jan 1;32(1):576-585. doi: 10.1364/OE.506112.
4
Pulse front adaptive optics: a new method for control of ultrashort laser pulses.
Opt Express. 2015 Jul 27;23(15):19348-57. doi: 10.1364/OE.23.019348.
6
Multibeam second-harmonic generation by spatiotemporal shaping of femtosecond pulses.
Opt Lett. 2012 Mar 1;37(5):957-9. doi: 10.1364/OL.37.000957.
7
Nonlinear plasma wavelength scalings in a laser wakefield accelerator.
Phys Rev E. 2020 Feb;101(2-1):023209. doi: 10.1103/PhysRevE.101.023209.
8
Multistage coupling of independent laser-plasma accelerators.
Nature. 2016 Feb 11;530(7589):190-3. doi: 10.1038/nature16525. Epub 2016 Feb 1.
9
Programmable-trajectory ultrafast flying focus pulses.
Opt Express. 2023 Sep 11;31(19):31354-31368. doi: 10.1364/OE.499839.
10
Raman Amplification with a Flying Focus.
Phys Rev Lett. 2018 Jan 12;120(2):024801. doi: 10.1103/PhysRevLett.120.024801.

引用本文的文献

1
Dephasingless two-color terahertz generation.
Sci Rep. 2024 Nov 4;14(1):26587. doi: 10.1038/s41598-024-75832-0.
2
Investigating group-velocity-tunable propagation-invariant optical wave-packets.
Sci Rep. 2022 Sep 27;12(1):16102. doi: 10.1038/s41598-022-20601-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验