Suppr超能文献

LAEO-Net++:重新审视视频中相互对视的人。

LAEO-Net++: Revisiting People Looking at Each Other in Videos.

作者信息

Marin-Jimenez Manuel J, Kalogeiton Vicky, Medina-Suarez Pablo, Zisserman Andrew

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Jun;44(6):3069-3081. doi: 10.1109/TPAMI.2020.3048482. Epub 2022 May 5.

Abstract

Capturing the 'mutual gaze' of people is essential for understanding and interpreting the social interactions between them. To this end, this paper addresses the problem of detecting people Looking At Each Other (LAEO) in video sequences. For this purpose, we propose LAEO-Net++, a new deep CNN for determining LAEO in videos. In contrast to previous works, LAEO-Net++ takes spatio-temporal tracks as input and reasons about the whole track. It consists of three branches, one for each character's tracked head and one for their relative position. Moreover, we introduce two new LAEO datasets: UCO-LAEO and AVA-LAEO. A thorough experimental evaluation demonstrates the ability of LAEO-Net++ to successfully determine if two people are LAEO and the temporal window where it happens. Our model achieves state-of-the-art results on the existing TVHID-LAEO video dataset, significantly outperforming previous approaches. Finally, we apply LAEO-Net++ to a social network, where we automatically infer the social relationship between pairs of people based on the frequency and duration that they LAEO, and show that LAEO can be a useful tool for guided search of human interactions in videos.

摘要

捕捉人们的“相互注视”对于理解和解读他们之间的社会互动至关重要。为此,本文探讨了在视频序列中检测人们相互注视(LAEO)的问题。为此,我们提出了LAEO-Net++,一种用于确定视频中LAEO的新型深度卷积神经网络。与先前的工作不同,LAEO-Net++将时空轨迹作为输入,并对整个轨迹进行推理。它由三个分支组成,每个分支对应一个角色的跟踪头部以及一个对应它们的相对位置。此外,我们引入了两个新的LAEO数据集:UCO-LAEO和AVA-LAEO。全面的实验评估证明了LAEO-Net++成功确定两人是否相互注视以及发生这种情况的时间窗口的能力。我们的模型在现有的TVHID-LAEO视频数据集上取得了领先的成果,显著优于先前的方法。最后,我们将LAEO-Net++应用于一个社交网络中,在该网络中,我们根据人们相互注视的频率和持续时间自动推断两人之间的社会关系,并表明LAEO可以成为引导搜索视频中人际互动的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验