Suppr超能文献

镓标记纳米抗体 Nb109 的免疫 PET 成像用于动态监测癌症中 PD-L1 的表达。

Immuno-PET imaging of Ga-labeled nanobody Nb109 for dynamic monitoring the PD-L1 expression in cancers.

机构信息

NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China.

Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.

出版信息

Cancer Immunol Immunother. 2021 Jun;70(6):1721-1733. doi: 10.1007/s00262-020-02818-y. Epub 2021 Jan 2.

Abstract

The checkpoint blockade immunotherapy has become a potent treatment strategy for cancers, and programmed death ligand-1 (PD-L1) is a prominent checkpoint ligand that is highly expressed in some cancers. The identification of immune checkpoint marker PD-L1 is critical for improving the success of immunotherapy. Accordingly, the binding specificity and dynamic monitoring property of a non-blocking nanobody tracer Ga-NOTA-Nb109 to PD-L1 were assessed in this study. The endogenous expression level of PD-L1 in several cancer cells was measured by flow cytometry, Western blot, and cellular uptake assay. Sensitivity and specificity of Ga-NOTA-Nb109 in monitoring the expression of PD-L1 in vivo were evaluated by PET imaging of different tumor-bearing models (U87, high PD-L1 expression; HCT 116, medium PD-L1 expression; and NCI-H1299, low PD-L1 expression). In vivo PET imaging results agreed well with those detected in vitro. In addition, PET imaging of PD-L1 expression in U87 and NCI-H1299 xenografts using F-FDG was also performed for comparison. The maximum tumor-to-muscle uptake ratio of Ga-NOTA-Nb109 was more than twofold that of F-FDG in U87 xenograft. The change of PD-L1 expression in NCI-H1299 cells and xenografts induced by cisplatin (CDDP) was sensitively monitored by Ga-NOTA-Nb109. This study demonstrated the feasibility of tracer Ga-NOTA-Nb109 for specifically targeting endogenous PD-L1 and dynamic monitoring the change of PD-L1 expression, and could guide the immunotherapy and immunochemotherapy for refractory cancers.

摘要

检查点阻断免疫疗法已成为癌症的一种有效治疗策略,程序性死亡配体 1(PD-L1)是一种高度表达于某些癌症的重要检查点配体。鉴定免疫检查点标志物 PD-L1 对于提高免疫治疗的成功率至关重要。因此,本研究评估了非阻断纳米抗体示踪剂 Ga-NOTA-Nb109 与 PD-L1 的结合特异性和动态监测特性。通过流式细胞术、Western blot 和细胞摄取实验测量了几种癌细胞中 PD-L1 的内源性表达水平。通过不同肿瘤荷瘤模型(U87,高 PD-L1 表达;HCT 116,中 PD-L1 表达;NCI-H1299,低 PD-L1 表达)的 PET 成像评估了 Ga-NOTA-Nb109 监测 PD-L1 体内表达的敏感性和特异性。体内 PET 成像结果与体外检测结果一致。此外,还进行了 F-FDG 用于 U87 和 NCI-H1299 异种移植瘤中 PD-L1 表达的 PET 成像比较。在 U87 异种移植瘤中,Ga-NOTA-Nb109 的最大肿瘤与肌肉摄取比是 F-FDG 的两倍多。Ga-NOTA-Nb109 敏感地监测了顺铂(CDDP)诱导的 NCI-H1299 细胞和异种移植瘤中 PD-L1 表达的变化。这项研究证明了示踪剂 Ga-NOTA-Nb109 特异性靶向内源性 PD-L1 并动态监测 PD-L1 表达变化的可行性,并能指导难治性癌症的免疫治疗和免疫化学治疗。

相似文献

1
Immuno-PET imaging of Ga-labeled nanobody Nb109 for dynamic monitoring the PD-L1 expression in cancers.
Cancer Immunol Immunother. 2021 Jun;70(6):1721-1733. doi: 10.1007/s00262-020-02818-y. Epub 2021 Jan 2.
2
PET Imaging of Tumor PD-L1 Expression with a Highly Specific Nonblocking Single-Domain Antibody.
J Nucl Med. 2020 Jan;61(1):117-122. doi: 10.2967/jnumed.119.226712. Epub 2019 Jun 28.
3
Immuno-PET imaging of PD-L1 expression in patient-derived lung cancer xenografts with [Ga]Ga-NOTA-Nb109.
Quant Imaging Med Surg. 2022 Jun;12(6):3300-3313. doi: 10.21037/qims-21-991.
5
Development of novel peptide-based radiotracers for detecting PD-L1 expression and guiding cancer immunotherapy.
Eur J Nucl Med Mol Imaging. 2024 Feb;51(3):625-640. doi: 10.1007/s00259-023-06480-1. Epub 2023 Oct 25.
7
Multifunctional Probe Based on "Chemical Antibody-Aptamer" for Noninvasive Detection of PD-L1 Expression in Cancer.
Mol Pharm. 2024 Jan 1;21(1):255-266. doi: 10.1021/acs.molpharmaceut.3c00818. Epub 2023 Dec 13.
8
In Vivo Evaluation and Dosimetry Estimate for a High Affinity Affibody PET Tracer Targeting PD-L1.
Mol Imaging Biol. 2021 Apr;23(2):241-249. doi: 10.1007/s11307-020-01544-2. Epub 2020 Oct 23.
9
In vivo positron emission tomography imaging for PD-L1 expression in cancer using aptamer.
Biochem Biophys Res Commun. 2022 Sep 10;620:105-112. doi: 10.1016/j.bbrc.2022.06.059. Epub 2022 Jun 22.
10
Preclinical evaluation of  Ga-labeled peptide CK2 for PET imaging of NRP-1 expression in vivo.
Eur J Nucl Med Mol Imaging. 2024 Jun;51(7):1826-1840. doi: 10.1007/s00259-024-06632-x. Epub 2024 Feb 6.

引用本文的文献

2
Development of a novel anti-CEACAM5 VHH for SPECT imaging and potential cancer therapy applications.
Eur J Nucl Med Mol Imaging. 2025 May 13. doi: 10.1007/s00259-025-07321-z.
5
Advancements in nuclear imaging using radiolabeled nanobody tracers to support cancer immunotherapy.
Immunother Adv. 2024 Aug 26;4(1):ltae006. doi: 10.1093/immadv/ltae006. eCollection 2024.
6
Bioorthogonal Diels-Alder Click Chemistry-Based Pretargeted PET Imaging Strategy for Monitoring Programmed Death-Ligand 1 Expression.
ACS Omega. 2024 Aug 21;9(35):36969-36981. doi: 10.1021/acsomega.4c01063. eCollection 2024 Sep 3.
7
Navigating the landscape of PD-1/PD-L1 imaging tracers: from challenges to opportunities.
Front Med (Lausanne). 2024 Jun 7;11:1401515. doi: 10.3389/fmed.2024.1401515. eCollection 2024.
8
PET imaging of PD-L1 with a small molecule radiotracer.
Eur J Nucl Med Mol Imaging. 2024 May;51(6):1578-1581. doi: 10.1007/s00259-024-06663-4.
9
Application of Magnetic Particles for Fast Determination of Immunoreactive Fraction of Ga-Labelled VHH Antibodies to PD-L1.
Sovrem Tekhnologii Med. 2023;15(3):26-33. doi: 10.17691/stm2023.15.3.03. Epub 2023 May 28.
10
Promising Diagnostic and Therapeutic Approaches Based on VHHs for Cancer Management.
Cancers (Basel). 2024 Jan 15;16(2):371. doi: 10.3390/cancers16020371.

本文引用的文献

1
Cisplatin increases PD-L1 expression and optimizes immune check-point blockade in non-small cell lung cancer.
Cancer Lett. 2019 Nov 1;464:5-14. doi: 10.1016/j.canlet.2019.08.005. Epub 2019 Aug 9.
2
PET Imaging of Tumor PD-L1 Expression with a Highly Specific Nonblocking Single-Domain Antibody.
J Nucl Med. 2020 Jan;61(1):117-122. doi: 10.2967/jnumed.119.226712. Epub 2019 Jun 28.
3
F-FDG PET metabolic-to-morphological volume ratio predicts PD-L1 tumour expression and response to PD-1 blockade in non-small-cell lung cancer.
Eur J Nucl Med Mol Imaging. 2019 Aug;46(9):1859-1868. doi: 10.1007/s00259-019-04348-x. Epub 2019 Jun 18.
5
Noninvasive Imaging and Quantification of Radiotherapy-Induced PD-L1 Upregulation with Zr-Df-Atezolizumab.
Bioconjug Chem. 2019 May 15;30(5):1434-1441. doi: 10.1021/acs.bioconjchem.9b00178. Epub 2019 Apr 19.
8
Relationship between the expression of PD-1/PD-L1 and F-FDG uptake in bladder cancer.
Eur J Nucl Med Mol Imaging. 2019 Apr;46(4):848-854. doi: 10.1007/s00259-018-4208-8. Epub 2019 Jan 9.
10
Predicting PD-1/PD-L1 status in bladder cancer with F-FDG PET?
Eur J Nucl Med Mol Imaging. 2019 Apr;46(4):791-793. doi: 10.1007/s00259-018-4224-8. Epub 2018 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验