Suppr超能文献

炎症微环境的作用:对提高乳腺癌纳米靶向治疗的潜在影响。

Role of inflammatory microenvironment: potential implications for improved breast cancer nano-targeted therapy.

机构信息

College of Pharmacy, Jinan University, Guangzhou, 510632, China.

Guang an'men Hospital China Academy of Chinese Medical Sciences, Beijing, China.

出版信息

Cell Mol Life Sci. 2021 Mar;78(5):2105-2129. doi: 10.1007/s00018-020-03696-4. Epub 2021 Jan 2.

Abstract

Tumor cells, inflammatory cells and chemical factors work together to mediate complex signaling networks, which forms inflammatory tumor microenvironment (TME). The development of breast cancer is closely related to the functional activities of TME. This review introduces the origins of cancer-related chronic inflammation and the main constituents of inflammatory microenvironment. Inflammatory microenvironment plays an important role in breast cancer growth, metastasis, drug resistance and angiogenesis through multifactorial mechanisms. It is suggested that inflammatory microenvironment contributes to providing possible mechanisms of drug action and modes of drug transport for anti-cancer treatment. Nano-drug delivery system (NDDS) becomes a popular topic for optimizing the design of tumor targeting drugs. It is seen that with the development of therapeutic approaches, NDDS can be used to achieve drug-targeted delivery well across the biological barriers and into cells, resulting in superior bioavailability, drug dose reduction as well as off-target side effect elimination. This paper focuses on the review of modulation mechanisms of inflammatory microenvironment and combination with nano-targeted therapeutic strategies, providing a comprehensive basis for further research on breast cancer prevention and control.

摘要

肿瘤细胞、炎症细胞和化学因子共同作用,介导复杂的信号转导网络,形成炎症性肿瘤微环境(TME)。乳腺癌的发生发展与 TME 的功能活动密切相关。本文介绍了癌症相关慢性炎症的起源和炎症微环境的主要组成部分。炎症微环境通过多因素机制在乳腺癌的生长、转移、耐药和血管生成中发挥重要作用。提示炎症微环境可能为抗癌治疗提供药物作用机制和药物转运方式的可能性。纳米药物递送系统(NDDS)成为优化肿瘤靶向药物设计的热门话题。可以看出,随着治疗方法的发展,NDDS 可以用于有效地穿越生物屏障并进入细胞,实现药物的靶向递送,从而提高生物利用度、减少药物剂量以及消除非靶向副作用。本文重点综述了炎症微环境的调节机制,并与纳米靶向治疗策略相结合,为进一步研究乳腺癌的防治提供了全面的基础。

相似文献

1
Role of inflammatory microenvironment: potential implications for improved breast cancer nano-targeted therapy.
Cell Mol Life Sci. 2021 Mar;78(5):2105-2129. doi: 10.1007/s00018-020-03696-4. Epub 2021 Jan 2.
2
A review of nanoparticle drug delivery systems responsive to endogenous breast cancer microenvironment.
Eur J Pharm Biopharm. 2021 Sep;166:30-43. doi: 10.1016/j.ejpb.2021.05.029. Epub 2021 Jun 8.
3
Targeting breast cancer through its microenvironment: current status of preclinical and clinical research in finding relevant targets.
Pharmacol Ther. 2015 Mar;147:63-79. doi: 10.1016/j.pharmthera.2014.11.004. Epub 2014 Nov 6.
4
Research progress in tumor angiogenesis and drug resistance in breast cancer.
Cancer Biol Med. 2024 Jun 25;21(7):571-85. doi: 10.20892/j.issn.2095-3941.2023.0515.
6
Nanotargeted agents: an emerging therapeutic strategy for breast cancer.
Nanomedicine (Lond). 2019 Jul;14(13):1771-1786. doi: 10.2217/nnm-2018-0481. Epub 2019 Jul 12.
7
Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance.
Nanomedicine. 2016 Feb;12(2):269-86. doi: 10.1016/j.nano.2015.10.020. Epub 2015 Dec 17.
9
Translational Nano-Medicines: Targeted Therapeutic Delivery for Cancer and Inflammatory Diseases.
AAPS J. 2015 Jul;17(4):813-27. doi: 10.1208/s12248-015-9772-2. Epub 2015 Apr 29.
10
Exploring the Potential of Nanotherapeutics in Targeting Tumor Microenvironment for Cancer Therapy.
Pharmacol Res. 2017 Dec;126:109-122. doi: 10.1016/j.phrs.2017.05.010. Epub 2017 May 13.

引用本文的文献

1
Neutrophils as key regulators of tumor microenvironment in breast cancer: a focus on N1 and N2 polarization.
Ann Med Surg (Lond). 2025 Apr 10;87(6):3509-3522. doi: 10.1097/MS9.0000000000003269. eCollection 2025 Jun.
2
Regulation of immune-mediated chemoresistance in cancer by lncRNAs: an in-depth review of signaling pathways.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Apr 9. doi: 10.1007/s00210-025-04081-3.
3
The role of pyroptosis in cancer: key components and therapeutic potential.
Cell Commun Signal. 2024 Nov 15;22(1):548. doi: 10.1186/s12964-024-01932-z.
6
7
GNAI2 Is a Risk Factor for Gastric Cancer: Study of Tumor Microenvironment (TME) and Establishment of Immune Risk Score (IRS).
Oxid Med Cell Longev. 2022 Oct 14;2022:1254367. doi: 10.1155/2022/1254367. eCollection 2022.
10
CTSV (cathepsin V) promotes bladder cancer progression by increasing NF-κB activity.
Bioengineered. 2022 Apr;13(4):10180-10190. doi: 10.1080/21655979.2022.2061278.

本文引用的文献

1
Cancer associated fibroblasts as novel promising therapeutic targets in breast cancer.
Pathol Res Pract. 2020 May;216(5):152915. doi: 10.1016/j.prp.2020.152915. Epub 2020 Mar 2.
2
Cellular adaptation to hypoxia through hypoxia inducible factors and beyond.
Nat Rev Mol Cell Biol. 2020 May;21(5):268-283. doi: 10.1038/s41580-020-0227-y. Epub 2020 Mar 6.
5
A framework for advancing our understanding of cancer-associated fibroblasts.
Nat Rev Cancer. 2020 Mar;20(3):174-186. doi: 10.1038/s41568-019-0238-1. Epub 2020 Jan 24.
6
The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches.
Cell Oncol (Dordr). 2020 Feb;43(1):1-18. doi: 10.1007/s13402-019-00489-1. Epub 2020 Jan 3.
8
Hypoxia: Overview on Hypoxia-Mediated Mechanisms with a Focus on the Role of HIF Genes.
Int J Mol Sci. 2019 Dec 5;20(24):6140. doi: 10.3390/ijms20246140.
10
Targeting L-Lactate Metabolism to Overcome Resistance to Immune Therapy of Melanoma and Other Tumor Entities.
J Oncol. 2019 Nov 3;2019:2084195. doi: 10.1155/2019/2084195. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验