Suppr超能文献

使用因子混合建模检验大学生亚临床样本中自闭症谱系商数的潜在结构。

Testing the Latent Structure of the Autism Spectrum Quotient in a Sub-clinical Sample of University Students Using Factor Mixture Modelling.

机构信息

Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.

University of Ottawa, Ottawa, ON, Canada.

出版信息

J Autism Dev Disord. 2021 Oct;51(10):3722-3732. doi: 10.1007/s10803-020-04823-7. Epub 2021 Jan 2.

Abstract

In the present study, factor mixture models (FMMs) were used to examine the latent structure underlying the Autism-Spectrum Quotient (AQ) among a sample of 633 undergraduate students. FMM represents a combination of latent-class, person-centered approaches and common-factor, variable-centered approaches to modeling population heterogeneity. Findings suggest the presence of either two or six latent classes with distinct profiles across the set of 50 AQ items. In addition, within each class, individuals can be further differentiated according to their scores on five latent factors. These results suggest the presence of phenotypical heterogeneity at the sub-clinical level in addition to that which is known to exist at the clinical level.

摘要

在本研究中,因子混合模型(FMM)被用于检验在 633 名大学生样本中自闭症谱系商数(AQ)背后的潜在结构。FMM 是潜在类别、以人为中心的方法与共同因素、以变量为中心的方法在人群异质性建模方面的结合。研究结果表明,在 50 项 AQ 项目中,存在着两种或六种具有不同特征的潜在类别。此外,在每个类别中,还可以根据个体在五个潜在因素上的得分进一步区分。这些结果表明,除了在临床水平上已知的异质性之外,在亚临床水平上也存在表型异质性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验